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Summary

Gaussian Processes (GPs) (Rasmussen & Williams, 2005) are flexible, nonparametric Bayesian
models widely used for regression and classification because of their ability to capture complex
data patterns and quantify predictive uncertainty. However, the @(n®) computational cost
of kernel matrix operations poses a major obstacle to applying GPs at scale. HiGP is a
high-performance Python package designed to overcome these scalability limitations through
advanced numerical linear algebra and hierarchical kernel representations. It integrates (2
matrices to achieve near-linear complexity in both storage and computation for spatial datasets,
supports on-the-fly kernel evaluation to avoid explicit storage in large-scale problems, and
incorporates a robust Adaptive Factorized Nystrdom (AFN) preconditioner (Zhao et al., 2024)
that accelerates convergence of iterative solvers across a broad range of kernel spectra. These
computational kernels are implemented in C++ for maximum performance and exposed through
Python interfaces, enabling seamless integration with modern machine learning workflows.
HiGP also includes analytically derived gradient computations for efficient hyperparameter
optimization, avoiding the inefficiencies of automatic differentiation in iterative solvers. By
serving as a reusable numerical engine, HiGP complements existing GP frameworks such
as GPJax (Pinder & Dodd, 2022), KeOps (Charlier et al., 2021), and GaussianProcesses.jl
(Fairbrother et al., 2022), providing a reliable and scalable computational backbone for
large-scale Gaussian Process regression and classification.

Gaussian Processes

For training points X € R™*?  a noisy training observation set y € R™, and testing points
X, € R™*?  a standard GP model assumes that the noise-free testing observations y, € R™
follow a joint Gaussian distribution that depends on a set of parameters, including scale f, noise
level s, and kernel parameters [. The GP model finds the optimal parameters © := (s, f,1) by
minimizing the negative log marginal likelihood:

1 — —
L(®) = 3 (yTK’ly +log |K| 4+ nlog 271') ,

where K denotes the regularized kernel matrix. An optimization process usually requires the
gradient of L(©):

oL 1 o 0K = 0K
— =2 | yTK1Z=K! K1—= .
50 2( y 50 y“r( ae))’ 0o

Using preconditioned iterative methods with preconditioner M ~ K is a common option (Aune
et al., 2014; Chen et al., 2023; Hensman et al., 2013; Pleiss et al., 2018; Wenger et al., 2022;
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Wilson et al., 2015; Zhang et al., 2024). In this approach, ﬁ_ly is approximated via the
preconditioned conjugate gradient (PCG) method (Saad, 2003). To handle the logarithmic
determinant and trace terms, they are first rewritten as

log |K| = log M| + log |[M~Y/2KM /2|, (1)

. 0K oM ~ 0K oM
g1 _ (M—l—) g1 ™M) 2
(K™ 5g) = tr a9 ) TV 50 50 (2)

The second component of each new expression is then estimated using the stochastic Lanczos
quadrature (Ubaru et al., 2017) and the Hutchinson estimator (Hutchinson, 1989; Meyer et
al., 2021), respectively.

Statement of Need

The Gaussian Process (GP) community has advanced rapidly in recent years, developing
scalable inference frameworks and more efficient kernel representations. Modern libraries such
as GPyTorch (Gardner et al., 2018), GPflow (Matthews et al., 2017; van der Wilk et al.,
2020), GPJax (Pinder & Dodd, 2022), KeOps (Charlier et al., 2021), and GaussianProcesses.jl
(Fairbrother et al., 2022) leverage GPUs and automatic differentiation to perform GP inference
efficiently on moderately large datasets. Concurrently, new algorithms, including preconditioned
optimization methods (Wenger et al., 2022), alternating-projection solvers (Wu et al., 2024),
GPU-accelerated Vecchia approximations for spatial data (Pan et al., 2024), robust relevance-
pursuit inference (Ament et al., 2024), and latent Kronecker formulations for structured
covariance matrices (Lin et al., 2025), have further improved the scalability and robustness
of GP models. Yet, most existing frameworks emphasize modeling flexibility and seamless
integration with autodiff ecosystems, rather than optimizing the low-level numerical routines
that dominate runtime for very large or ill-conditioned kernel systems. HiGP is designed to
address this computational gap by focusing on the numerical core of GP inference. It provides
robust, scalable, and hardware-efficient implementations of kernel algebra, preconditioned
iterative solvers, and gradient computations, offering three primary contributions.

Firstly, HiGP addresses the efficiency of MatVec, the most performance-critical operation in
iterative methods. For large 2D or 3D datasets, the dense kernel matrix is compressed into a
K2 matrix (Hackbusch et al., 2000; Hackbusch & Bérm, 2002) in HiGP, resulting in O(n)
storage and computation costs. For large high-dimensional datasets, HiGP computes small
kernel matrix blocks on-the-fly and immediately uses them in MatVec and discards them, which
allows HiGP to handle extremely large datasets with a moderate memory size.

Secondly, HiGP uses iterative solvers with the newly proposed AFN preconditioner (Zhao
et al., 2024), which is designed for robust preconditioning of kernel matrices. Experiments
demonstrate that AFN can significantly improve the accuracy and robustness of iterative solvers
for kernel matrix systems. Furthermore, AFN and 2 matrix computation rely on evaluating
many small kernel matrices in parallel, which is easily handled in C++ but would incur large
overhead in Python, making implementation in other libraries such as GPyTorch or GPFlow
more challenging.

Lastly, HiGP uses accurate and efficient hand-coded gradient calculations. GPyTorch relies
on the automatic differentiation (autodiff) provided in PyTorch to calculate gradients (Equa-
tion 2). However, autodiff can be inefficient and inaccurate for computing the gradient of
the preconditioner, so we use hand-coded gradient calculations for better performance and
accuracy.
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Design and Implementation

We implemented HiGP in Python 3 and C++ with the goal of providing both a set of ready-to-
use out-of-the-box Python interfaces for regular users and a set of reusable high-performance
shared-memory multithreading computational primitives for advanced users. The HiGP C++
code implements all performance-critical operations. The HiGP Python code wraps the C++
units into four basic Python modules: krnlmatmodule for computing kernel matrices and its
derivatives, precondmodule for PCG solver with AFN preconditioner, gprproblemmodule and
gpcproblemmodule for computing the the loss and gradient for GP regression and classification.
The two modules gprproblemmodule and gpcproblemmodule allow a user to train a GP model
with any gradient-based optimizer.

We further implemented two high-level modules GPRModel and GPCModel using PyTorch
parameter registration and optimizer to simplify the training and use of GP models. Listing 1
shows an example of defining and training a GP regression and using the trained model for
prediction.

gprproblem = higp.gprproblem.setup(data=train_x, label=train_y,
kernel_type=higp.GaussianKernel)
model = higp.GPRModel(gprproblem)
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
for 1 in ranges(max_steps):
loss = model.calc_loss_grad()
optimizer.step()
params = model.get_params()
pred = higp.gpr_prediction(train_x, train_y, test_x,
higp.GaussianKernel, params)

We note that the HiGP Python interfaces (except for GPRModel and GPCModel models) are
stateless. This design aims to simplify the interface and decouple different operations. A user
can train and use different GP models with the same or different data and configurations in
the same file.

Numerical Experiments

We conducted numerical experiments on an Ubuntu 20.04 LTS machine with dual Intel Xeon
Gold 6248R CPU (2x12 cores in total). We used PyTorch 2.8.0, GPyTorch 1.14, and HiGP
version 2025.11.3 for the tests.

We tested two data sets from the UCI Machine Learning Datasets: the “Bike Sharing” and
the “3D Road Network” data sets. We also tested three synthetic target functions from the
Virtual Library of Simulation Experiments with randomly sampled data points: Rosenbrock,
Rastrigin, and Branin. All datasets were normalized with Z-score normalization (x =0, 0 = 1)
applied to both features and targets using statistics from the training set. The results represent
averages over three independent runs for statistical reliability. Both HiGP and GPyTorch were
configured with identical computational budgets to ensure a fair comparison. E2E tests use
the following settings:

= Optimizer steps: 50

= CG iterations: 20 (training), 50 (prediction)

= Preconditioner/AFN rank: 10 (training), 100 (prediction)
= Optimizer: Adam with a learning rate of 0.01

= Precision: 32-bit floating point (FP32)

We first compared the end-to-end (E2E) accuracy and performance between HiGP and
GPyTorch. Table 1 shows HiGP achieves equivalent GP accuracy compared to GPyTorch, and
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Table 2 shows HiGP has better performance than GPyTorch under fixed computational budget
constraints and can handle some large datasets that GPyTorch cannot handle.

Table 1: HiGP accuracy tests on small data sets

HiGP GPyTorch Final
Dataset n_train Kernel Mode HiGP Final RMSE RMSE
Bike 3,000 RBF dense 0.0285 0.0284
Rosen- 3,000 Matern32 dense 0.0603 0.0658
brock
(5D)

Table 2: Performance comparison between HiGP and GPyTorch on large datasets

Dataset n_train Kernel HiGP Mode  HiGP Time (s) GPyTorch Time (s)
Road3D 50,000 RBF H2 191.2 14,739.3
Road3D 150,000 RBF H2 383.5 —
Branin 50,000 RBF H2 132.2 —
Branin 150,000 RBF H2 262.9 —
Rastrigin 30,000 Matern32 H2 100.6 278.2
(2D)

Rastrigin 30,000 Matern32 on-the-fly 198.5 275.6
(20D)

Rosen- 30,000 RBF H2 82.2 231.3
brock

(20)

Rosen- 30,000 RBF on-the-fly 190.8 230.6
brock

(20D)

We also tested the parallel strong scaling ability of HiGP. Table 3 and Table 4 show HiGP
has a good parallel scalability, and 72 matrix results match with the strong scaling results
in H2Pack (Huang et al., 2020) since HiGP uses the same 2 matrix parallel algorithms as

H2Pack.

Table 3: HiGP strong scaling performance test results with the 2D Rastrigin data set, Matern32 kernel,
and using % matrix method

Cores Training Inference
Time (s) Speedup Efficiency Time (s) Speedup Efficiency
1 1480.51 1.00x 100% 30.62 1.00x 100%
2 759.45 1.95x 97% 15.73 1.95x 97%
4 399.82 3.70x 93% 8.33 3.67x 92%
8 215.49 6.87x 86% 4.47 6.85x 86%
16 133.78 11.07x 69% 2.86 10.71x 67%
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Table 4: HiGP strong scaling performance test results with the 20-D Rastrigin data set, Matern32 kernel,
and using dense/on-the-fly method

Cores Training Inference
Time (s) Speedup  Efficiency Time (s) Speedup  Efficiency
1 2599.17 1.00x 100% 16.57 1.00x 100%
2 1411.49 1.84x 92% 9.02 1.84x 92%
4 744.72 3.49x 87% 5.03 3.29x 82%
8 398.91 6.52x 81% 2.80 5.92x 74%
16 229.92 11.30x 71% 1.76 9.41x 59%
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