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Summary
Bayesian statistics offers a principled and elegant framework for inferring hidden causes from
observed effects. It also provides a rigorous approach to hypothesis testing (model comparison),
with advantages such as built-in complexity penalties, and the ability to quantify evidence in
favour of the null hypothesis.

However, exact Bayesian inference is computationally intractable in all but the simplest of
cases, and requires approximate inference techniques, such as Markov chain Monte Carlo
(MCMC) and variational inference. Recent advances in the Python JAX (Bradbury et al.,
2018) framework have enabled highly efficient implementations of these algorithms, due to
features such as automated differentation and GPU acceleration. These developments have
the potential to greatly increase the efficiency of statistical modelling pipelines.

bamojax (‘Bayesian Modelling in Jax’) is a probabilistic programming language (PPL) that
combines ease-of-use with access to advanced inference algorithms implemented in the Jax
ecosystem.

Statement of need
Bamojax is a Bayesian modelling tool based on Python & JAX (Bradbury et al., 2018). It
provides an intuitive, intermediate-level interface between defining a Bayesian statistical model
conceptually, and performing efficient inference using the BlackJAX package (Cabezas et al.,
2024).

Existing probabilistic programming languages, such as PyMC (Abril-Pla et al., 2023), can
export (the logarithm of) a probability density function that enables BlackJAX-based inference.
However, this has two limitations:

1. It does not support Gibbs sampling, where variables are updated individually using their
own MCMC kernels. For example, when approximating the posterior over a latent
Gaussian process (GP) and its hyperparameters, elliptical slice sampling (Murray et al.,
2010) for the GP can be more efficient than applying No-U-Turn Hamiltonian Monte
Carlo (NUTS HMC; (Hoffman & Gelman, 2014)) sampling to all variables jointly. This
becomes even more important when embedding MCMC sampling in Sequential Monte
Carlo (Hinne, 2025).

2. It makes it harder to apply tempered Sequential Monte Carlo methods that need separate
prior and likelihood terms.

While users can circumvent these issues by manually implementing their models using BlackJAX,
this is a labor-intensive and error-prone process. Bamojax addresses this gap by providing a
user-friendly interface for model construction and Gibbs sampling on top of BlackJAX.

In Bamojax, users can define a probabilistic model by specifying variables as well as their
associated distributions and dependencies, structured using a directed acyclic graph (DAG).
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Under the hood, Bamojax translates this DAG and collection of probability distributions to the
probability densities used in the approximate inference, leveraging the probability definitions
defined in NumPyro (Phan et al., 2019). This abstraction allows users to focus on the
conceptual model formulation, rather than the mathematical or inference details, leading to a
more intuitive, less error-prone, and more efficient development workflow.

Bamojax is designed for researchers, students, and practitioners that want to make use of
the extremely fast approximate inference offered by BlackJAX, but want to focus on model
development instead of implementation.

Comparison with existing tools
Bamojax is comparable to existing modern probabilistic programming languages, like NumPyro
(Phan et al., 2019), Oryx (The Oryx Authors, 2022), and PyMC (Abril-Pla et al., 2023),
that use the fast JAX backend for efficient computation of Bayesian inference. The aim of
Bamojax is to give users full control in defining probability densities and transformations, while
at the same time providing some level of abstraction, by automatically deriving densities from
NumPyro primitives and the DAG structure of a Bayesian model. This allows for convenient
integration of new methods with existing tools.

Bamojax easily admits Gibbs sampling, where individual model parameters are updated in
turn, which in practice can lead to efficiency gains and sampling of discrete variables. These
benefits increase further when Gibbs sampling is used with Sequential Monte Carlo (Hinne,
2025), which is straightforward to set up here.

Furthermore, Bamojax provides a convenient interface to the different sampling algorithms
that are available in BlackJAX, giving the user fine-grained control over the inference strategy
of their models. This enables users to mix-and-match BlackJAX MCMC kernels with elements
of their probabilistic model, while maintaining the efficiency of JAX-based inference.
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