
NADI – Network Analysis and Data Integration with a
Domain Specific Language
Gaurav Atreya 1¶, Todd Steissberg 2, and Patrick A. Ray 1

1 Department of Chemical and Environmental Engineering, University of Cincinnati, OH, USA 2 U. S.
Army Engineer Research and Development Center (ERDC), Davis, CA, USA ¶ Corresponding author

DOI: 10.21105/joss.08655

Software
• Review
• Repository
• Archive

Editor: Mengqi Zhao
Reviewers:

• @jhwohlgemuth
• @lolpro11
• @amcandio

Submitted: 18 June 2025
Published: 27 August 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
We present the Network Analysis and Data Integration (NADI) System, a developing software
framework designed to facilitate river data analysis. NADI System includes a Domain Specific
Language (DSL) that has a succinct and readable syntax for network metadata analysis as well
as a plugin system to run user-defined functions on each node or the whole network. Plugins
provide seamless integration with other softwares and programming languages.

NADI System can be used from the Command Line Interface (CLI), Graphical User Interface
(GUI) using the NADI Integrated Development Environment (IDE), as a Rust library, or as a
Python library, allowing users to write their plugins or programs.

Statement of need
Hydrological analysis sometimes consists of data that is related to points in the river, and
frequently with relationships between upstream/downstream points (e.g., higher correlation,
mass balance). Some analyses that benefit from the use of such relationships are: finding
inconsistencies in the data, filling missing data, and visualization of metadata. There is a need
for intelligent computational assistance on a network-based system to reduce the workload
that further improves the efficiency and reproducibility of research in this field (Rosenberg et
al., 2020). Specific hydrology-focused softwares (Gironás et al., 2010; Rossman & Van Zyl,
2010) lack general applicability, while general-purpose programming languages might not have
a succinct syntax. This highlights the need for a balanced approach that combines specificity
to hydrological research questions with general capabilities.

Domain Specific Languages (DSLs) have several advantages including improved code readability
and maintainability due to the tailored syntax and semantics (Albuquerque et al., 2015; Mernik
et al., 2005). Among DSLs that have been developed for networks or hydrology, Graphviz
focuses on graph visualization (Ellson et al., 2004; Gansner & North, 2000), but lacks analytical
capabilities. Hydrolang offers both analysis and visualization tools tailored to hydrological
applications, although it is for web-based platforms (Erazo Ramirez et al., 2022). Languages
designed for grid-based spatial analysis (Kuhn & Ballatore, 2015; Pullar, 2001) are ill-suited
for handling values like streamflow, which exhibit partial spatial continuity along river courses,
but do not fit neatly into traditional 2D/3D spatial frameworks.

We present the NADI System that can load a river network as a Rooted Tree Graph (Deo, 2016)
— which is known to be one of the best ways to represent the river network (Abed-Elmdoust et
al., 2017; Kuhn & Ballatore, 2015; Rinaldo et al., 2006) — and provide the DSL for network
metadata analysis. Most components of the NADI System are written in Rust (Klabnik &
Nichols, 2023) due to the memory safety (Bugden & Alahmar, 2022; Fulton & Chan, 2021;
Xu et al., 2021), runtime performances (Zhang et al., 2023), and the macro system that gives

Atreya et al. (2025). NADI – Network Analysis and Data Integration with a Domain Specific Language. Journal of Open Source Software, 10(112),
8655. https://doi.org/10.21105/joss.08655.

1

https://orcid.org/0000-0002-0234-2165
https://orcid.org/0000-0003-3744-701X
https://orcid.org/0000-0001-9495-2317
https://doi.org/10.21105/joss.08655
https://github.com/openjournals/joss-reviews/issues/8655
https://github.com/Nadi-System/nadi-system
https://doi.org/10.5281/zenodo.16956958
https://energyenvironment.pnnl.gov/staff/staff_info.asp?staff_num=4297
https://orcid.org/0000-0001-5385-2758
https://github.com/jhwohlgemuth
https://github.com/lolpro11
https://github.com/amcandio
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08655


us the metaprogramming features necessary for the plugin development.

The figure below shows the GUI of NADI IDE, with the editor (left top), function help (left
bottom), terminal (top right), network viewer, and attribute browser (right bottom). These
panes can be managed in a tiling window style.

Figure 1: Screenshot of the NADI IDE showcasing different components

Data Structures
The DSL is inspired by Python (Rossum & Drake, 2010), array programming, and Rust.
Important components in the DSL are:

• Node is one point on the network. It can have input nodes, one output node, and
attributes associated with it.

• Network consists of several connected nodes. It can also have attributes associated with
it.

• Attributes are values that can be boolean, integer, float, string, date, time, datetime,
array, and table.

• Functions are categorized into environment, network, and node functions based on what
they work on. For example, network function is run on a network, while node function is
run on each node.

• Expressions are a combination of attributes, variables, function calls, conditionals, etc,
that can result in an attribute value.

• Propagation: As a node function is called on each node, Propagation determines which
nodes are called and in which order.

• Task in NADI System is an execution body consisting of the type of task, optional output
attribute name, and expression or function call. Only the top-level function call on the
expression can be mutable (changes task context).

• Task Context is the runtime environment for the DSL. It stores network, all the variables,
and functions from plugins.

The figure below shows how the DSL is run through different NADI applications and the
internal structures of the task context. Each task runs in the task context, giving outputs,
modifying the task context, or producing side effects (e.g., saving files).

Atreya et al. (2025). NADI – Network Analysis and Data Integration with a Domain Specific Language. Journal of Open Source Software, 10(112),
8655. https://doi.org/10.21105/joss.08655.

2

https://doi.org/10.21105/joss.08655


Figure 2: NADI Components and Internal Structure related to the DSL

Network Analysis
Network Analysis is done through the Task System by loading Network and Attributes into
the Task Context then running Tasks. For example, the following code represents a task that
calculates the variable y as a cumulative sum of all the values of variable x at a node and its
upstream points.

node<inputsfirst>.y = node.x + sum(inputs.y);

It is equivalent to:

𝑦𝑖 = 𝑥𝑖 +∑
𝑗∈𝐼𝑖

𝑦𝑗

Where 𝑥𝑖, 𝑦𝑖 are values of 𝑥, 𝑦 on node 𝑖 and 𝐼𝑖 is the set of input nodes for node 𝑖.

Atreya et al. (2024) demonstrates a complex task like river routing model using the network
structure. For more concepts and up-to-date syntax, refer to the NADI Book (Atreya, 2025).

Extensibility
NADI Task System supports two types of plugins for extending the use cases.

• Compiled Plugins are shared libraries (.so files in Linux, .dll in Windows, and .dynlib

in MacOS) containing a list of functions that can be loaded into the main program
during runtime.

• Executable Plugins are independent programs that are run and their standard output is
used to communicate values back to the NADI System.

Since DSLs have tradeoffs such as steep learning curves that can hinder adoption (Albuquerque
et al., 2015), a Python library nadi-py is available to use the NADI Task System functions
from Python (without the DSL).

Instructions on how to use them are available on the plugin developer guide and the Python
library sections of the NADI Book (Atreya, 2025).

Atreya et al. (2025). NADI – Network Analysis and Data Integration with a Domain Specific Language. Journal of Open Source Software, 10(112),
8655. https://doi.org/10.21105/joss.08655.

3

https://doi.org/10.21105/joss.08655


Acknowledgements
Grant: #W912HZ-24-2-0049 Investigators: Ray, Patrick 09-30-2024 – 09-29-2025 U.S. Army
Corps of Engineers Advanced Software Tools for Network Analysis and Data Integration (NADI)
74263.03 Hold Level: Federal

References
Abed-Elmdoust, A., Singh, A., & Yang, Z.-L. (2017). Emergent spectral properties of river

network topology: An optimal channel network approach. Scientific Reports, 7 (1), 11486.
https://doi.org/10.1038/s41598-017-11579-1

Albuquerque, D., Cafeo, B., Garcia, A., Barbosa, S., Abrahão, S., & Ribeiro, A. (2015). Quan-
tifying usability of domain-specific languages: An empirical study on software maintenance.
Journal of Systems and Software, 101, 245–259. https://doi.org/10.1016/j.jss.2014.11.051

Atreya, G. (2025). Network Analysis and Data Integration (NADI) System: User Manual
(0.7.0 ed.). https://nadi-system.github.io/

Atreya, G., Emery, E., Rogacki, N., Buck, M., Soltanian, R., McAvoy, D., & Ray, P. (2024).
Estimating the influence of water control infrastructure on natural low flow in complex
reservoir systems: A case study of the Ohio River. Journal of Hydrology: Regional Studies,
54, 101897. https://doi.org/10.1016/j.ejrh.2024.101897

Bugden, W., & Alahmar, A. (2022). The Safety and Performance of Prominent Programming
Languages. International Journal of Software Engineering and Knowledge Engineering,
32(05), 713–744. https://doi.org/10.1142/S0218194022500231

Deo, N. (2016). Graph Theory with Applications to Engineering and Computer Science.
Courier Dover Publications. ISBN: 978-0-486-80793-5

Ellson, J., Gansner, E. R., Koutsofios, E., North, S. C., & Woodhull, G. (2004). Graphviz and
Dynagraph — Static and Dynamic Graph Drawing Tools. In G. Farin, H.-C. Hege, D. Hoff-
man, C. R. Johnson, K. Polthier, M. Jünger, & P. Mutzel (Eds.), Graph Drawing Software
(pp. 127–148). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-18638-7_6

Erazo Ramirez, C., Sermet, Y., Molkenthin, F., & Demir, I. (2022). HydroLang: An open-source
web-based programming framework for hydrological sciences. Environmental Modelling &
Software, 157, 105525. https://doi.org/10.1016/j.envsoft.2022.105525

Fulton, K. R., & Chan, A. (2021). Benefits and Drawbacks of Adopting a Secure Programming
Language: Rust as a Case Study.

Gansner, E. R., & North, S. C. (2000). An open graph visualization system and its applications
to software engineering. Software: Practice and Experience, 30(11), 1203–1233. https:
//doi.org/10.1002/1097-024X(200009)30:11%3C1203::AID-SPE338%3E3.0.CO;2-N

Gironás, J., Roesner, L., Rossman, L., & Davis, J. (2010). A new applications manual for the
Storm Water Management Model (SWMM). Environmental Modelling & Software, 25,
813–814. https://doi.org/10.1016/j.envsoft.2009.11.009

Klabnik, S., & Nichols, C. (2023). The Rust programming language (2nd edition). No Starch
Press. ISBN: 978-1-7185-0310-6

Kuhn, W., & Ballatore, A. (2015). Designing a Language for Spatial Computing. In F. Bacao,
M. Y. Santos, & M. Painho (Eds.), AGILE 2015: Geographic Information Science as
an Enabler of Smarter Cities and Communities (pp. 309–326). Springer International
Publishing. https://doi.org/10.1007/978-3-319-16787-9_18

Mernik, M., Heering, J., & Sloane, A. M. (2005). When and how to develop domain-specific

Atreya et al. (2025). NADI – Network Analysis and Data Integration with a Domain Specific Language. Journal of Open Source Software, 10(112),
8655. https://doi.org/10.21105/joss.08655.

4

https://doi.org/10.1038/s41598-017-11579-1
https://doi.org/10.1016/j.jss.2014.11.051
https://nadi-system.github.io/
https://doi.org/10.1016/j.ejrh.2024.101897
https://doi.org/10.1142/S0218194022500231
https://doi.org/10.1007/978-3-642-18638-7_6
https://doi.org/10.1016/j.envsoft.2022.105525
https://doi.org/10.1002/1097-024X(200009)30:11%3C1203::AID-SPE338%3E3.0.CO;2-N
https://doi.org/10.1002/1097-024X(200009)30:11%3C1203::AID-SPE338%3E3.0.CO;2-N
https://doi.org/10.1016/j.envsoft.2009.11.009
https://doi.org/10.1007/978-3-319-16787-9_18
https://doi.org/10.21105/joss.08655


languages. ACM Comput. Surv., 37(4), 316–344. https://doi.org/10.1145/1118890.
1118892

Pullar, D. (2001). MapScript: A Map Algebra Programming Language Incorporating Neighbor-
hood Analysis. GeoInformatica, 5(2), 145–163. https://doi.org/10.1023/A:1011438215225

Rinaldo, A., Banavar, J. R., & Maritan, A. (2006). Trees, networks, and hydrology. Water
Resources Research, 42(6). https://doi.org/10.1029/2005WR004108

Rosenberg, D. E., Filion, Y., Teasley, R., Sandoval-Solis, S., Hecht, J. S., van Zyl, J. E.,
McMahon, G. F., Horsburgh, J. S., Kasprzyk, J. R., & Tarboton, D. G. (2020). The Next
Frontier: Making Research More Reproducible. Journal of Water Resources Planning and
Management, 146(6), 01820002. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001215

Rossman, L., & Van Zyl, J. (2010). The open sourcing of EPANET. In Water Distribution
Systems Analysis 2010 - Proceedings of the 12th International Conference, WDSA 2010.
https://doi.org/10.1061/41203(425)4

Rossum, G. van, & Drake, F. L. (2010). The Python language reference (Release 3.0.1 [Repr.]).
Python Software Foundation. ISBN: 978-1-4414-1269-0

Xu, H., Chen, Z., Sun, M., Zhou, Y., & Lyu, M. R. (2021). Memory-Safety Challenge
Considered Solved? An In-Depth Study with All Rust CVEs. ACM Trans. Softw. Eng.
Methodol., 31(1), 3:1–3:25. https://doi.org/10.1145/3466642

Zhang, Y., Zhang, Y., Portokalidis, G., & Xu, J. (2023). Towards Understanding the Runtime
Performance of Rust. Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, 1–6. https://doi.org/10.1145/3551349.3559494

Atreya et al. (2025). NADI – Network Analysis and Data Integration with a Domain Specific Language. Journal of Open Source Software, 10(112),
8655. https://doi.org/10.21105/joss.08655.

5

https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1023/A:1011438215225
https://doi.org/10.1029/2005WR004108
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001215
https://doi.org/10.1061/41203(425)4
https://doi.org/10.1145/3466642
https://doi.org/10.1145/3551349.3559494
https://doi.org/10.21105/joss.08655

	Summary
	Statement of need
	Data Structures
	Network Analysis
	Extensibility
	Acknowledgements
	References

