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Summary
The unique features of the hybrid quantum-classical computing model implied by the speci-
fication of OpenQASM 3.0 motivate new approaches to quantum program verification. We
implement and thoroughly test a QASM 3.0 parser in TypeScript to enable implementations of
verification and validation software, compilers, and more. We aim to help the community to
formalize the logic of hybrid quantum-classical computing by providing tools that may help
with such efforts.

Top Level Abstractions

The parser implements recursive descent parsing with support for expression precedence and
type checking. At a high level, the parsing can be split into three logical sections: expression
parsing, quantum-specific parsing, and classical parsing.

Expression parsing forms the foundation for both quantum and classical parsing by breaking
down expressions into their constituent parts and rebuilding them according to the mathematical
and operator syntax defined in the OpenQASM 3.0 official grammar (OpenQASM 3.0 Grammar,
n.d.). Starting with basic elements like numbers, variables, and operators, the parser constructs
an abstract syntax tree that reflects proper operator precedence and nesting. This process
handles not only mathematical operations but also array accesses, function calls, and parameter
lists, creating a structured representation that maintains the logical relationships between all
parts of the expression.

Quantum operation parsing manages the core quantum computing elements of QASM, ensuring
that quantum operations are syntactically correct. The parser maintains strict tracking of
quantum resources through its gates, standardGates, and customGates sets, validating that
each quantum operation references only properly defined gates and qubits. It processes quantum
register declarations, custom gate definitions, gate applications (including gate modifiers),
measurement operations, and timing-critical operations like barriers and delays. Each quantum
operation is validated in its context.

The classical parsing processes classical variable declarations with strict type checking, function
definitions with parameter and return type validation, control flow structures like conditional
statements and loops, and array operations. The parser maintains separate tracking for classical
and quantum resources while ensuring they can interact in well-defined ways. This enables
QASM programs to express complex quantum algorithms that require classical processing while
maintaining type safety and operational validity.
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Our parser produces a strongly-typed AST that captures the full structure of QASM programs
and is designed to enable subsequent semantic analysis.

Statement of Need
The OpenQASM 3.0 type system supports classical and quantum types as well as functions
which can be used to specify hybrid quantum-classical programs.

There is need for formal analysis and verification of hybrid quantum classical programs and we
argue that mathematical frameworks and software frameworks are needed to address this gap.

Hand-in-hand with formalization efforts are the development of community standards for
quantum programming. The standardization of quantum computer programming is ongoing
(Cross et al., 2022; Di Matteo et al., 2024) and relies significantly on open source software
and frameworks including some released only last year (Seidel et al., 2024; Wille et al., 2024).
Some community standards such as the 2022 Open Quantum Assembly (OpenQASM) 3.0
specification boast typing as well as interoperability and portability between quantum systems
of different types. However, others such as the QUASAR instruction set architecture assume
some backend details such as a classical co-processor to complement the Quantum Processing
Unit (QPU) (Shammah et al., 2024). To what extent the classical surrounds of a quantum
processing unit should be assumed or specified and at what part of the stack is an open
question. This “piping” can leverage many classical programming paradigms including web
technology. What we refer to here is distinct from cloud quantum computing which simply
offers a web-accessible front-end to users of quantum computers. Instead, we are interested
in parts of the programming model itself, such as pieces of the compile toolchain (compilers,
transpilers, assemblers, noise profilers, schedulers) that are implemented using web technology.
An example of this is Quantinuum’s QEC decoder toolkit, which uses a WebAssembly (WASM)
virtual machine (WAVM) as a real-time classical compute environment for QEC decoding (QEC
Decoder Toolkit - H-Series, n.d.). Other examples include our ports of Quantum Assembly
(QASM), Quantum Macro Assembler (QMASM), and Blackbrid to TypeScript (Edwards,
2023).

An important part of standardization is verification. Our typed OpenQASM 3.0 parser
implements a system that infers types from QASM syntax. This opens the door to the
type-based formal verification of QASM code. A body of work exists regarding the verification
of quantum software, and it is summarized in Fortunato et al. (2024).

The primary future direction that we see is the development of verification tools such as static
analysis tools based on QASM-TS in the vein of QChecker (Zhao et al., 2023). This could be
complemented by a formal type theory of OpenQASM 3.0.

Virtually every quantum computing company has provided access through a hybrid cloud. This
demands that parts of the stack be implemented in web technology, and we argue that it
is optimal in a sense to use technology that is designed for this environment when we find
ourselves working in a hybrid quantum / classical cloud. We suggest that a closer marriage of
open source efforts to the inherently web-based stack supporting existing quantum computing
offerings is desirable.

We note that Osaka University’s open-source quantum computer operating system project
“Oqtopus” already depends on and makes use of Qasm-ts (Aso et al., 2024) and thank the
Oqtopus team for their interest in our work.

Outcomes
Our comparative analysis focused on two promiment OpenQASM 3.0 parsers: Qiskit’s Python
ANLTR-based reference implementation and Qiskit’s experimental Rust parser.
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Performance Benchmarking

Benchmark Results
Result ANTLR Parser Rust Parser Qasm-ts
Success Rate 100% (11/11 files) 18.2% (2/11 files) 100% (11/11 files)
Average Time 8.53 ms 0.59 ms 0.90 ms
Min Time 1.93 ms 0.55 ms 0.36 ms
Max Time 30.54 ms 0.62 ms 3.68 ms

The benchmarking reveals that when just taking into account the AST generation, the Rust
implementation generally offers superior raw performance, but suffers from only currently
supporting a subset of the full OpenQASM 3.0 specification. The QASM-TS parser provides
competitive performance for web deployment scenarios, while the ANTLR parser offers a
balance of features and performance suitable for development and testing.
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