
caskade: building Pythonic scientific simulators
Connor Stone 1,2,3¶, Alexandre Adam 1,2,3, Adam Coogan 1,2,3,a,
Laurence Perreault-Levasseur 1,2,3,4,5,6, and Yashar Hezaveh 1,2,3,4,5,6

1 Ciela Institute - Montréal Institute for Astrophysical Data Analysis and Machine Learning, Montréal,
Québec, Canada 2 Department of Physics, Université de Montréal, Montréal, Québec, Canada 3 Mila -
Québec Artificial Intelligence Institute, Montréal, Québec, Canada 4 Center for Computational
Astrophysics, Flatiron Institute, 162 5th Avenue, 10010, New York, NY, USA 5 Perimeter Institute for
Theoretical Physics, Waterloo, Canada 6 Trottier Space Institute, McGill University, Montréal, Canada a
Work done while at UdeM, Ciela, and Mila ¶ Corresponding author

DOI: 10.21105/joss.08786

Software
• Review
• Repository
• Archive

Editor: Vincent Knight
Reviewers:

• @avapolzin
• @aslan-ng

Submitted: 13 July 2025
Published: 15 September 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Scientific simulators and pipelines form the core of many research projects. Writing high-quality,
modular code allows for efficiently scaling a project, but this can be challenging in a research
context. Research project goals and solutions to those goals are constantly in flux, requiring
many refactoring rounds to meet these changes. The result can be a progressively more
unwieldy interconnected code. Here we present a system, caskade, which allows users to focus
on modular components of a simulator, which are small and testable to ensure robustness.
With caskade, one can turn these modular components into abstracted blocks that connect
to form a powerful simulator. caskade manages the flow of parameter values through such a
simulator.

Statement of Need
Science is an intrinsically iterative process, and so is the development of scientific code. Well-
written code is flexible and scalable while being performant. This is difficult to achieve in a
scientific context where goals often evolve rapidly, requiring code refactoring. A major aspect
of this is the parameters of a scientific model: the values that will ultimately be sampled
and/or optimized to represent some data. A value may need to alternately be fixed, then
allowed to vary (e.g., in Gibbs sampling). Some parameters that were initially separate may
need to share a value or some functional relationship. In the extreme, a whole simulator may
become a function of a single variable, such as time. Metadata such as the uncertainty or
valid range of a parameter may need to be stored. One may need to represent all parameters
as a single 1D vector to interface with external tools, such as emcee (Foreman-Mackey et al.,
2013), scipy.optimize (Virtanen et al., 2020), Pyro (Bingham et al., 2019), dynesty (Speagle,
2020), or torch.Optim (Paszke et al., 2019). Large projects and correspondingly large teams
require the ability to break projects into manageable subtasks which can later be naturally
combined into a complete analysis suite. Most importantly, as all of the above needs change, it
is critical to meaningfully re-use older code without “code debt” or “software entropy” growing
unsustainably.

Features
The core features of caskade are the Module base class, Param object, and forward decorator.
To construct a caskade simulator, one subclasses Module then adds some number of Param
objects as attributes of the class. Any number of class methods may be decorated with @forward,

Stone et al. (2025). caskade: building Pythonic scientific simulators. Journal of Open Source Software, 10(113), 8786. https://doi.org/10.21105/
joss.08786.

1

https://orcid.org/0000-0002-9086-6398
https://orcid.org/0000-0001-8806-7936
https://orcid.org/0000-0002-0055-1780
https://orcid.org/0000-0003-3544-3939
https://orcid.org/0000-0002-8669-5733
https://doi.org/10.21105/joss.08786
https://github.com/openjournals/joss-reviews/issues/8786
https://github.com/ConnorStoneAstro/caskade
https://doi.org/10.5281/zenodo.17100450
https://vknight.org
https://orcid.org/0000-0002-4245-0638
https://github.com/avapolzin
https://github.com/aslan-ng
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08786
https://doi.org/10.21105/joss.08786


meaning caskade will manage the Param arguments of that function. As modules are combined
into a larger simulator, caskade builds a directed acyclic graph (DAG) representation. This
allows it to automatically manage the flow (cascade) of parameters through the simulator
and encode arbitrary relationships between them. This is inspired by the PyTorch framework
nn.Module, which allows for near-effortless construction of machine learning models. We
generalize the object oriented framework to apply to almost any scientific forward model,
simulator, analysis pipeline, and so on; caskade manages the flow of parameters through these
models.

Thus the primary capability of caskade is the management of Param values as they enter
@forward methods of Modules. Any parameter may be transformed between “static” and
“dynamic”, where static has a fixed value and dynamic is provided at call time. Parameters
may be synced with arbitrary functional relationships between them. New parameters may be
added dynamically to allow for sophisticated transformations. For example, an entire simulator
may be turned into a function of time without modifying the underlying simulator by adding a
time parameter and linking appropriately. It is possible to use caskade with NumPy (Harris et
al., 2020), JAX (Bradbury et al., 2018), or PyTorch (Paszke et al., 2019) numerical backends.

LensSource(sim)

psf x0 y0 SinglePlane(lens)

FlatLambdaCDM(cosmology)

z_sz_l

NodeTuple(lenses)[2]

h0 critical_density_0 Om0

SIE(lens)ExternalShear(shear)

z_sz_l x0 y0 q phi Reinz_sz_l x0 y0gamma_1 gamma_2

Figure 1: Example caskade DAG representation of a gravitational lensing simulator. Ovals represent
Modules, boxes represent dynamic parameters, shaded boxes represent fixed parameters, arrow boxes
represent parameters which are functionally dependent on another parameter, and thin arrows show the
direction of the graph flow for parameters passed at the top level.

Our suggested design flow is to build out a functional programming base for the package,
then use Modules as wrappers for the functional base to design a convenient user interface.
This design encourages modular development and is supportive of users who wish to expand
functionality at different levels. The caustics package (Stone et al., 2024) implements this
code design to great effect. Figure 1 shows an example caskade graph1 from caustics. In
this graph, the redshift parameters (z_l and z_s) of each lens are linked to ensure consistent
evaluation despite the functional backed having no explicit enforcement of this. See also that
all of the lens objects (ExternalShear, SIE, and SinglePlane) point to a single cosmology
Module and so share the same cosmological parameters automatically.

State of the Field
In some ways caskade is reminiscent of Hydra (Yadan, 2019). However, caskade focuses on
numerical parameters and scientific inference, while Hydra focuses on configuration management
and large scale process organization. The two may even be used in tandem. Another package,
tesseract-core (Häfner & Lavin, 2025), focuses more on containerization and distribution
of simulations to interface different ecosystems (PyTorch and JAX as well as Python and C++)
and on different compute engines (HPC clusters or in a cloud). The SimFrame (Stammler

1visual generated by graphviz (Ellson et al., 2004)

Stone et al. (2025). caskade: building Pythonic scientific simulators. Journal of Open Source Software, 10(113), 8786. https://doi.org/10.21105/
joss.08786.

2

https://doi.org/10.21105/joss.08786
https://doi.org/10.21105/joss.08786


& Birnstiel, 2022) package shares caskade’s modular and extensible core design, though is
focused exclusively on solving differential equations. While the Ecos package (Hatledal, 2025)
encodes the Functional Mockup Interface standard (Blochwitz, 2012), which is also designed
for building modular simulators though in the more strict FMI standard which requires auxiliary
.xml specification files, caskade focuses on lean and active research development, which
thrives on minimal overhead. Finally, PathSim also shares the caskade modular simulator
building framework, though it focuses exclusively on time-domain dynamical systems. Clearly,
many fields of research and development desire such modular simulation-building frameworks;
caskade fulfills the role very generally, though not so abstractly as to require overhead schema
or meta-data files.

Acknowledgements
This research was enabled by a generous donation by Eric and Wendy Schmidt with the
recommendation of the Schmidt Futures Foundation. C.S. acknowledges the support of a
NSERC Postdoctoral Fellowship and a CITA National Fellowship. This research was enabled in
part by support provided by Calcul Québec and the Digital Research Alliance of Canada. The
work of A.A. was partially funded by NSERC CGS D scholarships. Y.H. and L.P. acknowledge
support from the National Sciences and Engineering Council of Canada grants RGPIN-2020-
05073 and 05102, the Fonds de recherche du Québec grants 2022-NC-301305 and 300397,
and the Canada Research Chairs Program.

References
Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T.,

Singh, R., Szerlip, P., Horsfall, P., & Goodman, N. D. (2019). Pyro: Deep universal
probabilistic programming. The Journal of Machine Learning Research, 20(1), 973–978.
https://doi.org/10.48550/arXiv.1810.09538

Blochwitz, O., T. (2012). Functional mockup interface 2.0: The standard for tool independent
exchange of simulation models. 173–184. https://doi.org/10.3384/ecp12076173

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leery, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.3.13). http://github.com/google/
jax

Ellson, J., Gansner, E. R., Koutsofios, E., North, S. C., & Woodhull, G. (2004). Graphviz and
dynagraph—static and dynamic graph drawing tools. Graph Drawing Software, 127–148.
https://doi.org/10.1007/978-3-642-18638-7_6

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. (2013). emcee: The MCMC
hammer. Publications of the Astronomical Society of the Pacific, 125(925), 306. https:
//doi.org/10.1086/670067

Häfner, D., & Lavin, A. (2025). Tesseract core: Universal, autodiff-native software components
for simulation intelligence. Journal of Open Source Software, 10(111), 8385. https:
//doi.org/10.21105/joss.08385

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Hatledal, L. I. (2025). Ecos: An accessible and intuitive co-simulation framework. Journal of
Open Source Software, 10(110), 8182. https://doi.org/10.21105/joss.08182

Stone et al. (2025). caskade: building Pythonic scientific simulators. Journal of Open Source Software, 10(113), 8786. https://doi.org/10.21105/
joss.08786.

3

https://doi.org/10.48550/arXiv.1810.09538
https://doi.org/10.3384/ecp12076173
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1007/978-3-642-18638-7_6
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.21105/joss.08385
https://doi.org/10.21105/joss.08385
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.21105/joss.08182
https://doi.org/10.21105/joss.08786
https://doi.org/10.21105/joss.08786


Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. In Advances in neural information
processing systems 32 (pp. 8024–8035). Curran Associates, Inc. https://doi.org/10.
48550/arXiv.1912.01703

Speagle, J. S. (2020). DYNESTY: a dynamic nested sampling package for estimating Bayesian
posteriors and evidences. Monthly Notices of the Royal Astronomical Society, 493(3),
3132–3158. https://doi.org/10.1093/mnras/staa278

Stammler, S. M., & Birnstiel, T. (2022). Simframe: A Python framework for scientific
simulations. Journal of Open Source Software, 7(69), 3882. https://doi.org/10.21105/
joss.03882

Stone, C., Adam, A., Coogan, A., Yantovski-Barth, M. J., Filipp, A., Setiawan, L., Core,
C., Legin, R., Wilson, C., Barco, G. M., Hezaveh, Y., & Perreault-Levasseur, L. (2024).
Caustics: A Python package for accelerated strong gravitational lensing simulations. Journal
of Open Source Software, 9(103), 7081. https://doi.org/10.21105/joss.07081

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., …
SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing
in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Yadan, O. (2019). Hydra - a framework for elegantly configuring complex applications. Github.
https://github.com/facebookresearch/hydra

Stone et al. (2025). caskade: building Pythonic scientific simulators. Journal of Open Source Software, 10(113), 8786. https://doi.org/10.21105/
joss.08786.

4

https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1093/mnras/staa278
https://doi.org/10.21105/joss.03882
https://doi.org/10.21105/joss.03882
https://doi.org/10.21105/joss.07081
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/facebookresearch/hydra
https://doi.org/10.21105/joss.08786
https://doi.org/10.21105/joss.08786

	Summary
	Statement of Need
	Features
	State of the Field
	Acknowledgements
	References

