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Summary
Scientific simulators and pipelines form the core of many research projects. Writing high-quality,
modular code allows for efficiently scaling a project, but this can be challenging in a research
context. Research project goals and solutions to those goals are constantly in flux, requiring
many refactoring rounds to meet these changes. The result can be a progressively more
unwieldy interconnected code. Here we present a system, caskade, which allows users to focus
on modular components of a simulator, which are small and testable to ensure robustness.
With caskade, one can turn these modular components into abstracted blocks that connect
to form a powerful simulator. caskade manages the flow of parameter values through such a
simulator.

Statement of Need
Science is an intrinsically iterative process, and so is the development of scientific code. Well-
written code is flexible and scalable while being performant. This is difficult to achieve in a
scientific context where goals often evolve rapidly, requiring code refactoring. A major aspect
of this is the parameters of a scientific model: the values that will ultimately be sampled
and/or optimized to represent some data. A value may need to alternately be fixed, then
allowed to vary (e.g., in Gibbs sampling). Some parameters that were initially separate may
need to share a value or some functional relationship. In the extreme, a whole simulator may
become a function of a single variable, such as time. Metadata such as the uncertainty or
valid range of a parameter may need to be stored. One may need to represent all parameters
as a single 1D vector to interface with external tools, such as emcee (Foreman-Mackey et al.,
2013), scipy.optimize (Virtanen et al., 2020), Pyro (Bingham et al., 2019), dynesty (Speagle,
2020), or torch.Optim (Paszke et al., 2019). Large projects and correspondingly large teams
require the ability to break projects into manageable subtasks which can later be naturally
combined into a complete analysis suite. Most importantly, as all of the above needs change, it
is critical to meaningfully re-use older code without “code debt” or “software entropy” growing
unsustainably.

Features
The core features of caskade are the Module base class, Param object, and forward decorator.
To construct a caskade simulator, one subclasses Module then adds some number of Param
objects as attributes of the class. Any number of class methods may be decorated with @forward,
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meaning caskade will manage the Param arguments of that function. As modules are combined
into a larger simulator, caskade builds a directed acyclic graph (DAG) representation. This
allows it to automatically manage the flow (cascade) of parameters through the simulator
and encode arbitrary relationships between them. This is inspired by the PyTorch framework
nn.Module, which allows for near-effortless construction of machine learning models. We
generalize the object oriented framework to apply to almost any scientific forward model,
simulator, analysis pipeline, and so on; caskade manages the flow of parameters through these
models.

Thus the primary capability of caskade is the management of Param values as they enter
@forward methods of Modules. Any parameter may be transformed between “static” and
“dynamic”, where static has a fixed value and dynamic is provided at call time. Parameters
may be synced with arbitrary functional relationships between them. New parameters may be
added dynamically to allow for sophisticated transformations. For example, an entire simulator
may be turned into a function of time without modifying the underlying simulator by adding a
time parameter and linking appropriately. It is possible to use caskade with NumPy (Harris et
al., 2020), JAX (Bradbury et al., 2018), or PyTorch (Paszke et al., 2019) numerical backends.

LensSource(sim)

psf x0 y0 SinglePlane(lens)

FlatLambdaCDM(cosmology)

z_sz_l

NodeTuple(lenses)[2]

h0 critical_density_0 Om0

SIE(lens)ExternalShear(shear)

z_sz_l x0 y0 q phi Reinz_sz_l x0 y0gamma_1 gamma_2

Figure 1: Example caskade DAG representation of a gravitational lensing simulator. Ovals represent
Modules, boxes represent dynamic parameters, shaded boxes represent fixed parameters, arrow boxes
represent parameters which are functionally dependent on another parameter, and thin arrows show the
direction of the graph flow for parameters passed at the top level.

Our suggested design flow is to build out a functional programming base for the package,
then use Modules as wrappers for the functional base to design a convenient user interface.
This design encourages modular development and is supportive of users who wish to expand
functionality at different levels. The caustics package (Stone et al., 2024) implements this
code design to great effect. Figure 1 shows an example caskade graph1 from caustics. In
this graph, the redshift parameters (z_l and z_s) of each lens are linked to ensure consistent
evaluation despite the functional backed having no explicit enforcement of this. See also that
all of the lens objects (ExternalShear, SIE, and SinglePlane) point to a single cosmology
Module and so share the same cosmological parameters automatically.

State of the Field
In some ways caskade is reminiscent of Hydra (Yadan, 2019). However, caskade focuses on
numerical parameters and scientific inference, while Hydra focuses on configuration management
and large scale process organization. The two may even be used in tandem. Another package,
tesseract-core (Häfner & Lavin, 2025), focuses more on containerization and distribution
of simulations to interface different ecosystems (PyTorch and JAX as well as Python and C++)
and on different compute engines (HPC clusters or in a cloud). The SimFrame (Stammler

1visual generated by graphviz (Ellson et al., 2004)
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& Birnstiel, 2022) package shares caskade’s modular and extensible core design, though is
focused exclusively on solving differential equations. While the Ecos package (Hatledal, 2025)
encodes the Functional Mockup Interface standard (Blochwitz, 2012), which is also designed
for building modular simulators though in the more strict FMI standard which requires auxiliary
.xml specification files, caskade focuses on lean and active research development, which
thrives on minimal overhead. Finally, PathSim also shares the caskade modular simulator
building framework, though it focuses exclusively on time-domain dynamical systems. Clearly,
many fields of research and development desire such modular simulation-building frameworks;
caskade fulfills the role very generally, though not so abstractly as to require overhead schema
or meta-data files.
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