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Summary
Multiplexed immunofluorescence microscopy captures detailed, spatially resolved measurements
of multiple biomarkers simultaneously. These measurements reveal tissue composition and
cellular interactions in situ at the single-cell level. The growing scale and dimensional complexity
of these datasets demand reproducible, comprehensive, and user-friendly computational tools.
To address this need, we developed SPAC (SPAtial single-Cell analysis), a Python-based package
and a corresponding Shiny application within an integrated, modular SPAC ecosystem designed
specifically for biologists without extensive coding expertise. Following image segmentation
and extraction of spatially resolved single-cell data, SPAC streamlines downstream phenotyping
and spatial analysis, facilitating the characterization of cellular heterogeneity and spatial
organization within tissues. Through scalable performance, specialized spatial statistics, highly
customizable visualizations, and seamless workflows from dataset to insights, SPAC significantly
lowers the barriers to sophisticated spatial analyses.

Statement of Need
Multiplexed protein imaging (e.g., CODEX (Goltsev et al., 2018), CyCIF (Lin et al., 2018),
MxIF (Gerdes et al., 2013)) yields gigabyte-scale, single-cell datasets with millions of cells per
study. Extracting biological signal from these datasets requires reproducible workflows that
span preprocessing, phenotyping, spatial statistics, and interactive visualization.

The spatial omics ecosystem includes general frameworks for single-cell data and spatial
analysis (AnnData (Virshup et al., 2024), Scanpy (Wolf et al., 2018), Squidpy (Palla et al.,
2022)) and toolkits focused on multiplex imaging and spatial proteomics (SCIMAP (Nirmal &
Sorger, 2024)), alongside methods aimed primarily at spatial transcriptomics (Seurat (Hao
et al., 2021), Giotto Suite (Chen et al., 2025), GraphST (Long et al., 2023), Bento (Mah
et al., 2024)). These packages collectively provide data structures, clustering, dimensionality
reduction, neighborhood graphs, and spatial interaction metrics, and they are widely adopted
for programmatic analyses.

Despite this progress, biologists without coding expertise face steep barriers when conducting
end-to-end analyses independently and iteratively. Projects often require stitching together
multiple libraries and ad hoc scripts, which slows hypothesis testing, complicates reproducibility,
and makes figure generation brittle and hard to reuse at scale.

SPAC is a Python package for downstream analysis of single-cell multiplexed imaging data
following segmentation. It ingests per-cell tables (CSV/H5AD/tabular) with spatial coordinates
and marker intensities and exposes a reproducible, AnnData‑compliant Python API; all analysis
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artifacts and figures are preserved to support sharing, reruns, and downstream reuse. As the
core analytical layer of the broader SPAC ecosystem (Liu et al., 2025), the package connects
to interactive pipelines and real‑time dashboards on enterprise platforms through a modular,
layered architecture. This design enables large‑scale analyses without requiring users to write
code. Its purpose is to lower the barrier for non‑programmers while preserving rigorous, reusable
workflows. For example, SPAC uses biologist-friendly terminology (e.g., “cells,” “features,”
“tables,” “associated tables,” and “annotations”) and clear messaging so users can interpret
results and diagnostics without a bioinformatics analyst’s assistance.

To address real-time scalability for datasets exceeding 10 million cells, SPAC integrates
optimized numerical routines from NumPy’s compiled, C-based backend (Harris et al., 2020).
These optimizations make common plotting and summarization tasks (e.g., histograms, box
plots) substantially faster—more than 5× faster than comparable Seaborn‑based workflows
(Waskom, 2021) in our tests—reducing typical runtimes from tens of seconds to a few seconds.
This responsiveness supports iterative exploratory data analysis and figure generation on very
large cohorts without sacrificing reproducibility.

SPAC provides customizable visualization methods. Pinning colors to annotations maintains
consistent color mapping across figures and sessions. Interactive spatial plots (Plotly) (Plotly
Technologies Inc., 2015) allow users to toggle features (e.g., biomarkers) on and off and to
switch among multiple annotations simultaneously, enabling intuitive exploration of spatial
relationships and patterns. Stratified and gridded plotting with optimized statistical summaries
makes subgroup comparisons (e.g., across conditions or phenotypes) clear within a single view.

SPAC builds directly on community standards and methods but contributes a coherent foun-
dation that enhances key functions for spatial analyses and visualization. To highlight a few
examples, SPAC enhances core analyses (e.g., nearest‑neighbor metrics leveraging SCIMAP’s
spatial‑distance utilities) with flexible, built‑in plotting and native support for stratification,
subsetting, and faceting. Users can fine-tune plot aesthetics and export layouts, making it
straightforward to produce consistent, publication‑ready figures. SPAC strengthens the func-
tionality of existing packages: SPAC implements a phenotype‑pair‑specific Ripley’s L (Kiskowski
et al., 2009) that treats one phenotype as “centers” and another as “neighbors,” and applies
radius‑dependent guard-zone edge correction by excluding center cells whose r‑neighborhood
intersects the ROI boundary. Unlike generalized implementations (e.g., Squidpy), this design
reduces edge‑induced inflation at larger radii and yields more reliable, interpretable L(r) curves
for concrete cell-cell interactions. SPAC also adds new features; for instance, it implements a
neighborhood profile via a KDTree‑based approach, quantifying the distribution of neighboring
cell phenotypes within user-defined distance bins. The resulting three-dimensional array en-
codes, for every cell and every distance bin, the count of neighboring cells of each phenotype.
This array captures the local cellular microenvironment within the AnnData object and supports
downstream dimensionality-reduction methods such as spatial UMAP (Giraldo et al., 2021).

Structure and Implementation
The SPAC package is available on GitHub and can be installed locally via Conda or Docker
images. It comprises five modules that streamline data processing, transformation, spatial
analysis, visualization, and common utilities. All modules are interoperable, forming a cohesive
workflow (Figure 1).

At the architectural level, the SPAC package serves as a foundation layer that builds on
community libraries while underpinning interactive, no‑code surfaces. By decoupling the analysis
layer from any specific UI, a single, tested codebase can power both web‑hosted pipelines
and interactive dashboards, eliminating duplicated analysis logic. This separation keeps the
package focused on analytical semantics and performance while allowing heterogeneous front
ends to reuse the same analysis primitives. For instance, an interactive Shiny for Python
dashboard (GitHub) is hosted on Posit Connect and is accessible via a web browser at SPAC
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Interactive Visualization (Liu et al., 2025). This dashboard provides a no-code interface
to SPAC’s real-time visualization capabilities, featuring multiple tool modules and “Getting
Started” tutorials that are publicly available to researchers without programming expertise.

SPAC adheres to enterprise-level software engineering standards, featuring extensive unit testing,
rigorous edge-case evaluation, comprehensive logging, and clear, context-rich error handling.
These practices ensure reliability, adaptability, and ease of use across various deployment
environments, including interactive Jupyter notebooks, analytic platforms (e.g., Code Ocean
(Code Ocean, 2019), Palantir Foundry (Palantir Technologies, 2003)), Galaxy (Jalili et al.,
2020), and real-time dashboards. Emphasizing readability and maintainability, SPAC provides
a versatile and enhanced analytical solution for spatial single-cell analyses. To date, SPAC has
been used in the analysis of more than eight datasets comprising over 30 million cells across
diverse studies (Keretsu et al., 2025).
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Figure 1: Overview of the SPAC workflow. The schematic presents an integrated pipeline for spatial
single-cell analysis. Segmented cell data with spatial coordinates from various imaging platforms are
ingested, normalized, clustered, phenotyped, and analyzed spatially to assess cell distributions and
interactions while maintaining consistent data lineage.
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