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Summary
Time-to-event (survival) analysis models the time until a pre-specified event occurs. When time
is measured in discrete units or rounded into intervals, standard continuous-time models can
yield biased estimators. In addition, the event of interest may belong to one of several mutually
exclusive types, referred to as competing risks, where the occurrence of one event prevents
the occurrence or observation of the others. PyDTS is an open-source Python package for
analyzing discrete-time survival data with competing-risks. It provides regularized estimation
methods, model evaluation metrics, variable screening tools, and a simulation module to
support research and development.

Statement of need
Time-to-event analysis is applied when the outcome of interest is the time until a pre-specified
event occurs. In some settings, the time variable is inherently or effectively discrete, for
example, when time is measured in weeks or months, or when event times are rounded or
grouped into intervals. Competing risks arise when observations are at risk of experiencing
multiple mutually exclusive event types, such that the occurrence of one event precludes the
occurrence or observation of the others. Discrete-time survival data with competing risks are
encountered across a wide range of scientific disciplines. For instance, in healthcare, the time
to death from cancer is often recorded in months, with death from other causes considered a
competing event.

While excellent Python packages for continuous-time survival-analysis exist (Davidson-Pilon,
2019; Pölsterl, 2020), a comprehensive, user-friendly Python toolkit specifically designed
for discrete-time survival analysis is still missing. Moreover, in the continuous-time setting,
competing-risks data can often be analyzed using methods developed for non-competing events,
since the full likelihood function factorizes into separate likelihoods for each cause-specific
hazard function (Kalbfleisch & Prentice, 2011). In contrast, this factorization does not hold in
the discrete-time setting (Lee et al., 2018; Meir & Gorfine, 2025), and dedicated estimation
procedures are required to correctly account for the competing risk structure.

PyDTS bridges this gap by providing tools for analyzing discrete-time survival data with
competing risks, designed to support both expert and non-expert researchers. Specifically, it
offers:

• Discrete-time competing-risks regression models, based on the methods of Lee et al.
(2018) and Meir & Gorfine (2025).

• Automated procedures for hyperparameter tuning.
• Sure Independence Screening methods for feature selection (Zhao & Li, 2012).
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• Model evaluation metrics for predictive accuracy and calibration (Meir & Gorfine, 2025).
• Simulation tools for generating synthetic datasets for research and testing.

To the best of our knowledge, PyDTS is the first open-source Python package dedicated for
discrete-time survival analysis with competing risks. Details on the statistical models and
methods implemented in PyDTS are summarized in the package documentation and described
in great detail in Meir & Gorfine (2025).

Key Features
PyDTS can be easily installed via PyPI as follows:

pip install pydts

It includes the following key features:

1. Estimation procedures: Two methods are implemented, TwoStagesFitter of Meir &
Gorfine (2025), and DataExpansionFitter of Lee et al. (2018). The TwoStagesFitter

supports both regularization and the inclusion of time-dependent covariates, features
that are not available in the DataExpansionFitter implementation.

2. Sure Independence Screening: The SISTwoStagesFitter class implements the Sure
Independence Screening (SIS) of Zhao & Li (2012). SIS is a powerful dimensionality
reduction technique designed for ultra-high-dimensional settings, where the number of
covariates far exceeds the number of observations, a situation often encountered in
genomic studies and other high-throughput domains. It works by filtering out a large
number of uninformative covariates based on their marginal association with the outcome.
After screening, penalized variable selection methods (e.g., LASSO) are typically applied
to the reduced set of covariates to perform more refined modeling and selection.

3. Evaluation Metrics: The package includes functions for computing key performance
metrics for discrete-time survival data with competing risks and right-censoring, including
the cause-specific cumulative/dynamic area under the receiver operating characteristic
curve (AUC) and the Brier score (BS). Formal definitions of all implemented evaluation
metrics are provided in Meir & Gorfine (2025).

4. Hyperparameters tuning: The package provides automated procedures for hyperparameter
selection, including grid search combined with cross-validation, enabling robust model
calibration and improved generalization performance.

5. Data Generation: The EventTimesSampler module facilitates the generation of discrete-
time survival data with competing risks and right censoring. Given user-specified model
parameters, including the number of discrete event times, true regression coefficients,
and covariate values for each observation, EventTimesSampler simulates both event
times and event types. The module supports two types of right censoring: administrative
censoring, applied when the simulated event time exceeds a user-defined maximum
follow-up duration, and random censoring, which can be either covariate-dependent
or independent. This flexible simulation framework is useful for benchmarking models,
testing estimation procedures, and conducting methodological research.

Case Study
The utility of PyDTS is demonstrated through an analysis of patients’ length of stay (LOS) in
intensive care unit (ICU), conducted by Meir & Gorfine (2025). This analysis uses the publicly
accessible, large-scale Medical Information Mart for Intensive Care (MIMIC-IV, version 2.0)
dataset (Goldberger et al., 2000; Johnson et al., 2022).

Meir & Gorfine (2025) developed a discrete-time survival model to predict ICU LOS based
on patients’ clinical characteristics at admission. The dataset comprises 25,170 ICU patients.
For each patient, only the last admission is considered, and features related to prior admission

Meir et al. (2025). PyDTS: A Python Package for Discrete-Time Survival Analysis with Competing Risks and Optional Penalization. Journal of
Open Source Software, 10(115), 8815. https://doi.org/10.21105/joss.08815.

2

https://tomer1812.github.io/pydts/
https://doi.org/10.21105/joss.08815


history are included. The LOS is recorded in discrete units from 1 to 28 days, resulting in many
patients sharing the same event time on each day. Three competing events are considered:
discharge to home (69.0%), transfer to another medical facility (21.4%), and in-hospital death
(6.1%). Patients who left the ICU against medical advice (1.0%) are treated as right-censored,
and administrative censoring is applied to those hospitalized for more than 28 days (2.5%).
The analysis includes 36 covariates per patient. For a full description of the data, see Meir &
Gorfine (2025).

Three estimation procedures were compared: the method of Lee et al. (2018) without regular-
ization, two-step approach of Meir & Gorfine (2025) without and with LASSO regularization.
When applying the two-step procedure with LASSO regularization, we need to specify the
hyperparameters that control the amount of regularization applied to each competing event.
PyDTS provides functionality for tuning these hyperparameters via K-fold cross-validation. By
default, the optimal values are those that maximize the out-of-sample global-AUC metric, as
defined in Meir & Gorfine (2025), Appendix I. Additional tuning options are also available. Here,
a grid search with 4-fold cross-validation was performed to select the optimal hyperparameters
that maximize the global-AUC. The code below illustrates such tuning procedure

import numpy as np

from pydts.cross_validation import PenaltyGridSearchCV

penalizers = np.exp(range(-12, -1))

penalty_cv_search = PenaltyGridSearchCV()

gauc_cv_results = penalty_cv_search.cross_validate(

full_df=mimic_df, l1_ratio=1, penalizers=penalizers, n_splits=4)

where mimic_df is the full dataframe containing the covariates, an event-type column, an
event-time column, and an event indicator column; penalizers is the set of penalization
values evaluated for each risk, denoted as 𝜂𝑗, with 𝑗 = 1, 2, 3; n_splits is the number of folds;
and l1_ratio controls the balance between L1 and L2 regularization, with l1_ratio = 1

corresponding to pure L1 (LASSO) regularization. Figure 1 presents the results of the selection
procedure. Panels A–C illustrate the number of non-zero estimated coefficients, denoted as
𝛽𝑗, as a function of the regularization hyperparameter 𝜂𝑗 for each competing event. Panels
D–F illustrate the coefficient values as a function of 𝜂𝑗 for each competing event. Panels
G–I illustrate the ÂUC𝑗(𝑡) metric for the selected set of 𝜂𝑗, 𝑗 = 1, 2, 3. A comprehensive
description of the case study settings and results can be found in Meir & Gorfine (2025).

Additional examples demonstrating PyDTS’s functionality are also provided in Meir & Gorfine
(2025) and in the package documentation. These include analyses with regularized regression
across varying sample sizes and levels of covariates’ correlation, as well as the application of
Sure Independence Screening in ultra-high-dimensional settings (Zhao & Li, 2012). These
examples make use of the package’s built-in data generation tools, underscoring its usefulness
for methodological development and evaluation.
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Figure 1: MIMIC dataset - LOS analysis. Regularized regression with 4-fold CV. The selected values of
𝜂𝑗 are shown in dashed-dotted lines on panels A-F. A-C. Number of non-zero coefficients for 𝑗 = 1, 2, 3.
D-F. The estimated coefficients, as a function of 𝜂𝑗, 𝑗 = 1, 2, 3. G-I. Mean (and SD bars) of the 4 folds
ÂUC𝑗(𝑡), 𝑗 = 1, 2, 3, for the selected values log 𝜂1 = −5, log 𝜂2 = −9 and log 𝜂3 = −11. The number
of observed events of each type is shown by bars.
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