SS

The Journal of Open Source Software

NAMOSIM: a Robot Motion Planner for Navigation
Among Movable Obstacles

H 1,4 1,34 H 12,4
David Brown @ “*, Jacques Saraydaryan © “**, Benoit Renault ® **, and
.. . . 124
Olivier Simonin ® ~=
1 Inria, CHROMA Team 2 INSA Lyon 3 CPE Lyon 4 CITI Laboratory
DOI: 10.21105/joss.08816
SOftware rviz/basic_view.rviz* - RViz 2@ x
File Panels Help
= Review (7 e Clselec 4 [S Dcoslpe @ Publhpone 4 =
) Displays o] @ Views O
= Repository 7) 2 SomioT i
R i z:::a : - cu::::él;:w ::sop‘nuwnorthom
= Archive &7 » $¢ DynamicEn... v Target Fra... <Fixed Frame>
» F2 map v Scale 187,659
~ [@ robot_0 v gl
T ok v e
» Topic /namosim/robot_0/plan
« 4% maniy search 7
. 7 . . 7 » v status: Ok
Editor: Sébastien Boisgérault i o emosinsht o, seuch
~ $° RRT v
Reviewers: <o % namosinrobot oyt
Depth 5
= QOstevemacenski et e
Durability... Volatile
. Oseabass i
» 9 Combined C...
~ [Conflicts
Submitted: 26 July 2025 e
Published: 30 September 2025 e o[oSt len
Y
License > Le;'i‘(espx(es /namosim/robot_1/manip_search
Authors of papers retain copyright
and release the work under a .
Creative Commons Attribution 4.0 o 5
International License (CC BY 40) :os:ime. 175344493032 | ROSElapsed: 42.77 Wall Time: 175344493034 | Wall Elapsed: [42.77 Experimer::ips

Robot e Movable Obstacle Obstacle Placement [] Transit Path—— Transfer Path—

Figure 1: A NAMOSIM scenario with one robot and two obstacles is visualized in RViz. The robot's
plan is shown by the blue lines. The darker shade of blue indicates the part of the path involving an
obstacle transfer. The empty rectangles indicate the planned obstacle placements. The social costmap is
seen in the rainbow background.

Summary

NAMOSIM is a mobile robot motion planner and simulator designed for the problem of
Navigation Among Movable Obstacles (NAMO). The planner simulates robots navigating in
2D polygonal environments where certain obstacles can be grasped and relocated to enable
robots to reach their goals. NAMOSIM extends the classic navigation problem with a layer of
interactivity, posing interesting research questions while remaining well-defined and amenable
to various algorithmic approaches. NAMOSIM is intended for researchers and developers
working on robot navigation in dynamic environments, particularly where physical interaction
is necessary.

NAMOSIM supports the development of custom NAMO algorithms using a modular agent-based
architecture. It includes a baseline agent implementing Stilman’s NAMO algorithm (Stilman &
Kuffner, 2005) and incorporating a communication-free coordination strategy for multi-robot
scenarios (Renault et al., 2024). A variety of other agent behaviors are implemented, and new

Brown et al. (2025). NAMOSIM: a Robot Motion Planner for Navigation Among Movable Obstacles. Journal of Open Source Software, 10(113), 1
8816. https://doi.org/10.21105/joss.08816.

https://orcid.org/0009-0000-3804-7734
https://orcid.org/0000-0002-1436-3393
https://orcid.org/0009-0001-3332-7371
https://orcid.org/0000-0002-3070-7790
https://doi.org/10.21105/joss.08816
https://github.com/openjournals/joss-reviews/issues/8816
https://github.com/Chroma-CITI/namosim
https://doi.org/10.5281/zenodo.17151934
https://github.com/boisgera
https://orcid.org/0000-0003-4685-8099
https://github.com/stevemacenski
https://github.com/sea-bass
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08816

The Journal of Open Source Software

agents utilizing alternative approaches can be integrated into the planner by implementing the
Agent base class. NAMOSIM thus supports reproducible research in single and multi-robot
NAMO algorithms.

NAMOSIM is packaged as a ROS 2 (Steven Macenski et al., 2022) package to facilite
integration with commonly-used robotics tools such as Nav2 (Steve Macenski et al., 2020)
and Gazebo (Koenig & Howard, 2004), but it can also be used as a standalone Python
module. Simulations are displayed in a Tkinter window and ROS 2 messages are published for
more-detailed visualization in RViz (Kam et al., 2015). Several prebuilt scenarios for testing
and benchmarking are included. These are stored as SVG files, allowing for convenient creation
of custom scenarios using a free SVG editor such as Inkscape.

Statement of Need

Many interesting applications in autonomous mobile robotics involve physical interaction with
the environment as well as social coordination with other agents. However, global navigation
planners typically assume static environments, leaving complex behaviors to be managed by
separate software components, complicating implementation. Ideally, motion planners should
be able to reason about physical and social interactions and adapt to changing conditions.
NAMOSIM addresses this challenge by providing an open-source planner and simulation
environment designed for single and multi-robot NAMO algorithms, which require not only
navigation but also reasoning about which obstacles to move, where to move them, and how
to coordinate with other agents.

While there are several prior works on NAMO (Levihn et al., 2013, 2014; Scholz et al., 2016;
Wau et al., 2010; Zhang et al., 2023), they lack multi-robot capability and do not provide
reusable open-source tools designed for real-world deployment on physical robots. There is
also a large body of work on multi-agent path finding (MAPF), but this does not consider
movable obstacles. Another innovative related work (Baker et al., 2020) involved both multiple
agents and movable obstacles, but was not designed for navigation nor for robotics applications.
NAMOSIM fills this gap by providing a versatile software package for experimenting with single
and multi-robot NAMO algorithms, supporting the robotics community to create more capable
and adapative robotic systems.

Major Features

NAMOSIM provides a robust set of features to support research and development in Navigation
Among Movable Obstacles (NAMO):

= Modular Agent-Based Architecture: The simulator is built around a flexible Agent inter-
face, allowing users to implement and test custom NAMO planning algorithms. A baseline
NAMO algorithm implementation is available for immediate use and benchmarking.

= Support for Multiple Robot Models: NAMOSIM supports both holonomic and differential-
drive robot models, enabling realistic simulation of various robotic platforms.

= ROS 2 Integration: NAMOSIM forms a ROS 2 package, enabling seamless integration
into simulated and physical robotics projects and visualization via RViz.

= 2D Environment Simulation: The simulator provides a customizable 2D environment
where users can define static and movable obstacles, supporting complex scenarios for
testing multi-robot coordination strategies and NAMO algorithms.

= Prebuilt Scenarios and Tests: NAMOSIM includes several custom scenario files for
benchmarking and testing specific situations.

= Multi-Robot Coordination: The simulator supports multi-robot scenarios, and our
baseline agent implements a communication-free coordination strategy (Renault et al.,
2024).

Brown et al. (2025). NAMOSIM: a Robot Motion Planner for Navigation Among Movable Obstacles. Journal of Open Source Software, 10(113), 2
8816. https://doi.org/10.21105/joss.08816.

https://doi.org/10.21105/joss.08816

The Journal of Open Source Software

These features make NAMOSIM a versatile tool for prototyping, evaluating, and deploying
NAMO algorithms in diverse robotic applications.

Customizable Scenarios

NAMOSIM environments, or scenarios, are stored in SVG format and can be edited using any
SVG editor, such as Inkscape. The scenario SVG file contains the following key elements:

= The geometry of the static map
= The polygons and orientations of all robots and movable obstacles
= Configuration settings that define the behavior of the environment and robots

The static map can also be included as an image layer within the SVG to conveniently
incorporate ROS grid-map images generated by standard mapping tools.

Inputs NAMOSIM Outputs
SVG Scenario ; No pone)
) N \ J/
scenario.svg _— S
. Yes- < Active Agents? >
h ~ Tkinter Window ‘
Or
YAML Scenario | Sense LS Act RVIZ ‘
L, J L — (
namo_config.yml — —
JSON Report ‘
. . v v
map.yml Reference World Agent
_ (Agents - Sensed World Lous ‘
1 r " | ROS Publisher
Movable Obstacles Planning Algorithms
map.png .)
- Static Map
i

Figure 2: NAMOSIM High-Level Architecture

At a high level, NAMOSIM executes a SENSE-THINK-ACT loop that performs the following
functions at each iteration:

1. SENSE: Each agent senses the environment and updates its internal representation.
2. THINK: Each agent computes a new plan or updates its current plan.
3. ACT: Each agent selects a single discrete action to execute.

The loop is expected to execute at a regular frequency, with the assumption that all agent
functions run sequentially in a synchronized manner.

Stilman’s NAMO Algorithm

NAMOSIM includes a baseline implementation of Stilman’s 2005 NAMO algorithm (Stilman
& Kuffner, 2005). The key idea of this algorithm is to move obstacles to merge disjoint
components of the robot's free configuration space. The map is divided into a set of disjoint
connected components, where each grid cell in a given component is reachable from all other
cells in the same component. It can be proven that components are separated by movable
obstacles or are otherwise unreachable. The algorithm functions by moving obstacles to join
components until the robot’s current component includes the goal cell.

The algorithm works by recursively performing the following two stages:

Brown et al. (2025). NAMOSIM: a Robot Motion Planner for Navigation Among Movable Obstacles. Journal of Open Source Software, 10(113), 3
8816. https://doi.org/10.21105/joss.08816.

https://doi.org/10.21105/joss.08816

The Journal of Open Source Software

1. SELECT_OBSTACLE_AND_COMPONENT: The first stage performs a simplified
A* grid search, allowing the agent to pass through movable obstacles. It returns the ID
of the first movable obstacle encountered on the optimal path to the goal and the ID of
the component encountered after passing through the obstacle.

2. OBSTACLE_MANIPULATION_SEARCH: The second stage finds a transit path
from the robot’s current position to a grasp pose near the obstacle. Then, it finds a
transfer path by performing an obstacle manipulation search to join the robot's current
component to the component selected in stage 1. If this stage fails, the obstacle and
component pair are added to an avoid-list, and the algorithm returns to stage 1.

Each iteration of the algorithm continues with a copy of the environment where the robot
and obstacle start from the poses resulting from the previous obstacle manipulation search.
See also Renault (2023) for more details. Wu et al. (2010) extended Stilman'’s algorithm to
unknown environments where obstacle movability is ascertained through interaction. We hope
to implement this idea in NAMOSIM in future work.

Collision Detection

Custom agents are free to implement their own collision detection routines; however, the
baseline agent detects collisions using a simple binary-occupancy grid during transit paths
(when not carrying an obstacle), assuming a circular robot footprint. When transporting a
movable obstacle, the robot footprint is non-circular, and collision detection is based on the
convex swept volume resulting from the area swept by the combined robot-obstacle footprint
due to the action motion (Jiménez et al., 1998). Although computationally expensive, this
ensures all possible collisions are detected, regardless of the shape of the robot or obstacle.

Social Costmap

A novel contribution in the baseline implementation is the option to use a social costmap
during the obstacle manipulation search to guide obstacle placement decisions. This allows
robots to place obstacles in areas less likely to block the free passage of other agents, including
humans, reducing the likelihood that obstacles will need to be moved again. The key heuristic
of the social costmap is to avoid narrow corridors and central areas, assigning higher costs to
narrow corridors and the centers of open spaces. This helps robots avoid placing obstacles in
front of doorways or in the center of rooms. The social costmap is explained in greater detail
in Renault et al. (2020) and Renault (2023).

Conflict Avoidance and Deadlock Resolution

NAMOSIM'’s baseline agent can avoid conflicts and resolve deadlocks with other agents.
Conflict avoidance works by looking ahead along the agent's current plan for a fixed number
of steps, called the conflict horizon. Within this horizon, the agent simulates each planned
action and checks for potential conflicts. For example, the agent may have planned to move
an obstacle that is no longer at the expected location, or another robot may be crossing the
planned path within the conflict horizon, raising the potential for a collision.

The baseline agent avoids conflicts by either pausing or replanning around them. A deadlock is
detected when the same conflict configuration is repeatedly encountered, even after replanning.
To resolve deadlocks, the agent follows an evasion strategy which is optionally based on the
local social costmap (Renault et al., 2024).

Acknowledgements

This research was supported by the Inria NAMOEX initiative.

Brown et al. (2025). NAMOSIM: a Robot Motion Planner for Navigation Among Movable Obstacles. Journal of Open Source Software, 10(113), 4
8816. https://doi.org/10.21105/joss.08816.

https://doi.org/10.21105/joss.08816

The Journal of Open Source Software

References

Baker, B., Kanitscheider, |., Markov, T., Wu, Y., Powell, G., McGrew, B., & Mordatch, |. (2020).
Emergent tool use from multi-agent autocurricula. https://arxiv.org/abs/1909.07528

Jiménez, P., Thomas, F., & Torras, C. (1998). Collision detection algorithms for motion
planning. In J.-P. Laumond (Ed.), Robot motion planning and control (pp. 305-343).
Springer Berlin Heidelberg. https://doi.org/10.1007 /BFb0036075

Kam, H. R., Lee, S.-H., Park, T., & Kim, C.-H. (2015). RViz: A toolkit for real do-
main data visualization. Telecommun. Syst., 60(2), 337-345. https://doi.org/10.1007/
s11235-015-0034-5

Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-
robot simulator. /EEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 3, 2149-2154. https://doi.org/10.1109/IR0S.2004.1389727

Levihn, M., Scholz, J., & Stilman, M. (2013). Hierarchical decision theoretic planning for
navigation among movable obstacles. In E. Frazzoli, T. Lozano-Perez, N. Roy, & D. Rus
(Eds.), Algorithmic foundations of robotics x (pp. 19-35). Springer Berlin Heidelberg,.
https://doi.org/10.1007 /978-3-642-36279-8_2

Levihn, M., Stilman, M., & Christensen, H. (2014). Locally optimal navigation among movable
obstacles in unknown environments. 2014 IEEE-RAS International Conference on Humanoid
Robots, 86-91. https://doi.org/10.1109/HUMANOIDS.2014.7041342

Macenski, Steven, Foote, T., Gerkey, B., Lalancette, C., & Woodall, W. (2022). Robot
operating system 2: Design, architecture, and uses in the wild. Science Robotics, 7(66),
eabm6074. https://doi.org/10.1126/scirobotics.abm6074

Macenski, Steve, Martin, F., White, R., & Clavero, J. G. (2020). The marathon 2: A
navigation system. 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2718-2725. https://doi.org/10.1109/iros45743.2020.9341207

Renault, B. (2023). Navigation among movable obstacles (NAMO) extended to social and
multi-robot constraints (PhD Thesis No. 2023ISAL0105, INSA Lyon). https://hal.science/
tel-04418723

Renault, B., Saraydaryan, J., Brown, D., & Simonin, O. (2024). Multi-robot navigation
among movable obstacles: Implicit coordination to deal with conflicts and deadlocks. 2024
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3505-3511.
https: / /doi.org/10.1109/IROS58592.2024.10802092

Renault, B., Saraydaryan, J., & Simonin, O. (2020). Modeling a social placement cost to
extend navigation among movable obstacles (NAMO) algorithms. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 11345-11351. https://doi.org/10.
1109/1ROS45743.2020.9340892

Scholz, J., Jindal, N., Levihn, M., Isbell, C. L., & Christensen, H. I. (2016). Navigation
among movable obstacles with learned dynamic constraints. 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 3706-3713. https://doi.org/10.
1109/IR0S.2016.7759546

Stilman, M., & Kuffner, J. J. (2005). Navigation among movable obstacles: Real-time
reasoning in complex environments. International Journal of Humanoid Robotics, 2(4),
479-503. https://doi.org/10.1142/S0219843605000545

Wu, H.-N., Levihn, M., & Stilman, M. (2010). Navigation among movable obstacles in
unknown environments. 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1433-1438. https://doi.org/10.1109/IR0S.2010.5649744

Brown et al. (2025). NAMOSIM: a Robot Motion Planner for Navigation Among Movable Obstacles. Journal of Open Source Software, 10(113), 5
8816. https://doi.org/10.21105/joss.08816.

https://arxiv.org/abs/1909.07528
https://doi.org/10.1007/BFb0036075
https://doi.org/10.1007/s11235-015-0034-5
https://doi.org/10.1007/s11235-015-0034-5
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1007/978-3-642-36279-8_2
https://doi.org/10.1109/HUMANOIDS.2014.7041342
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1109/iros45743.2020.9341207
https://hal.science/tel-04418723
https://hal.science/tel-04418723
https://doi.org/10.1109/IROS58592.2024.10802092
https://doi.org/10.1109/IROS45743.2020.9340892
https://doi.org/10.1109/IROS45743.2020.9340892
https://doi.org/10.1109/IROS.2016.7759546
https://doi.org/10.1109/IROS.2016.7759546
https://doi.org/10.1142/S0219843605000545
https://doi.org/10.1109/IROS.2010.5649744
https://doi.org/10.21105/joss.08816

The Journal of Open Source Software

Zhang, K., Lucet, E., Sandretto, J. A. dit, & Filliat, D. (2023). Navigation among movable
obstacles using machine learning based total time cost optimization. 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 11321-11327. https:
//doi.org/10.1109/IR0S55552.2023.10341355

Brown et al. (2025). NAMOSIM: a Robot Motion Planner for Navigation Among Movable Obstacles. Journal of Open Source Software, 10(113), 6
8816. https://doi.org/10.21105/joss.08816.

https://doi.org/10.1109/IROS55552.2023.10341355
https://doi.org/10.1109/IROS55552.2023.10341355
https://doi.org/10.21105/joss.08816

	Summary
	Statement of Need
	Major Features
	Customizable Scenarios
	Architecture
	Stilman’s NAMO Algorithm
	Collision Detection
	Social Costmap
	Conflict Avoidance and Deadlock Resolution

	Acknowledgements
	References

