The Journal of Open Source Software

DOI: 10.21105/joss.08832

Software
= Review &7
= Repository @
= Archive &0

Editor: Neea Rusch 7
Reviewers:
= @shrishar

= @amcandio

Submitted: 30 June 2025
Published: 30 September 2025

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

Type Enforced: A Python type enforcer for type
annotations

Connor Makowski @ Y, Willem Guter®?!, and Timothy Russell ©*

1 Massachusetts Institute of Technology Cambridge, United StatesROR q Corresponding author

Summary

type_enforced is a pure Python package designed to enforce type annotations at runtime
without the need for a special compiler. It provides an intuitive decorator-based interface
that allows developers to enforce explicit typing constraints on function and method inputs,
return types, dataclasses, and class instances. The package supports a comprehensive set of
Python's built-in types, typing module constructs (such as List, Dict, Union, Optional, and
Literal), nested data structures, and custom constraints. By offering runtime validation of
type annotations and constraints, type_enforced enhances code reliability, readability, and
maintainability.

Statement of Need

Python's dynamic typing system offers flexibility but can lead to runtime errors that are difficult
to diagnose in web applications, complex scientific software, and research applications. Static
type checking tools such as Mypy provide valuable compile-time validation; however, they do
not prevent runtime type errors. Existing runtime enforcement libraries often require extensive
boilerplate code or lack support for advanced typing features and nested structures.

The type_enforced package addresses these limitations by providing robust runtime en-
forcement of Python type annotations with comparable speed when compared to bench-
marking. It supports advanced typing features including nested iterables, union types, data-
classes, inheritance-based validation, uninitialized class type checks, and custom constraints
(Constratint, GenericConstraint). This functionality is particularly important for research
software development, where correctness of data types is critical for reproducibility and reliability.

In scientific computing, type_enforced helps ensure the correctness of numerical simulations,
validates complex machine learning data pipelines, and reduces subtle runtime errors that
could compromise reproducibility. It has proven valuable in collaborative environments, such
as transportation modeling and logistics optimization, where contributors with varying Python
expertise develop models that must integrate seamlessly through APls or shared workflows. By
catching type mismatches early, type_enforced improves the robustness and trustworthiness
of research software.

Functionality and Features

Key features provided by the package include:

= Decorator-based enforcement: Easily apply enforcement to functions, methods, classes,
static methods, class methods, and dataclasses.

= Comprehensive typing support: Supports built-in Python types (int, str, list, dict,
etc.), typing module constructs (List, Dict, Union, Optional, Literal, Any), union

Makowski et al. (2025). Type Enforced: A Python type enforcer for type annotations. Journal of Open Source Software, 10(113), 8832. 1
https://doi.org/10.21105/joss.08832.

https://orcid.org/0009-0005-1522-022X
https://orcid.org/0009-0002-1638-4726
https://orcid.org/0000-0001-8399-9339
https://ror.org/042nb2s44
https://doi.org/10.21105/joss.08832
https://github.com/openjournals/joss-reviews/issues/8832
https://github.com/connor-makowski/type_enforced
https://doi.org/10.5281/zenodo.17184819
https://nkrusch.github.io
https://orcid.org/0000-0002-7354-5330
https://github.com/shrishar
https://github.com/amcandio
https://creativecommons.org/licenses/by/4.0/
https://github.com/connor-makowski/type_enforced/blob/main/benchmark.md
https://github.com/connor-makowski/type_enforced/blob/main/benchmark.md
https://doi.org/10.21105/joss.08832

The Journal of Open Source Software

types (int | float), nested structures (dict[str, dict[str, int]]), and deeply
nested iterables (list[set[str]]).

Custom constraints: Validate input values with built-in constraint classes (e.g., numerical
bounds) or user-defined generic constraints (e.g., membership in a predefined set).
Inheritance-aware validation: Validate instances against class hierarchies. Inheritance-
aware validation allows any subclass to pass type checks if the parent class is expected
(e.g., accepting a MySubclass instance for a parameter of type MyParentClass).
Validate class instances and classes: Type enforcement supports both class instance
and uninitialized class object validation, enabling flexible function signatures for factory
methods and advanced patterns.

Flexible enable/disable mechanism: Enable or disable enforcement selectively at the
function or class level to accommodate debugging versus production environments.

Related Work

Python's ecosystem for type checking and data validation is rich and rapidly evolving, reflecting
the growing need for both static and runtime type safety in scientific and production code.
The landscape can be broadly divided into static type checkers, runtime type checkers, and
project-based frameworks. Recent empirical studies, such as Rak-amnouykit et al. (2020),
have analyzed the adoption and semantics of Python's type systems in real-world codebases,
highlighting both the promise and the challenges of practical type enforcement.

Static Type Checkers

Static type checkers analyze code before execution, using type hints to catch potential errors
and improve code reliability without incurring runtime overhead.

= Mypy (Lehtosalo & Mypy contributors, 2012): Mypy is the most widely adopted static

type checker for Python, implementing a conventional static type system based on PEP
484. It enforces fixed variable types and reports errors when type annotations are violated.
As detailed by Rak-amnouykit et al. (2020), Mypy represents the canonical approach to
static type checking in Python, and its semantics have become a baseline for evaluating
new type inference tools.

Pyright (Microsoft Corporation, 2025): A fast type checker developed by Microsoft,
offering real-time feedback in editors.

PyType (Google, 2024): Developed by Google, PyType also provides static analysis and
type inference for Python code, but with a distinct approach. Unlike Mypy, PyType
maintains separate type environments for different branches in control flow and can infer
more precise union types for variables that take on multiple types. The comparative study
by Rak-amnouykit et al. (2020) shows that PyType and Mypy differ in their handling of
type joins, attribute typing, and error reporting, reflecting broader trade-offs in static
analysis for dynamic languages.

Runtime Type Checkers and Data Validation

Runtime type checkers enforce type constraints as the program executes, which is particularly
valuable when handling external data or integrating with user-facing APls.

= Pydantic (Colvin et al., 2017): Pydantic is a widely used library for runtime data

validation targed at dataclass like objects, leveraging type hints to enforce data schemas
and automatically cast input values. It is central to frameworks like FastAPI and is
particularly effective for validating input from untrusted sources.

Typeguard (Gronholm, 2016): Typeguard offers single type level runtime enforcement
of function type annotations, raising errors when arguments or return values violate
declared types. It is lightweight and integrates easily into existing codebases.

Makowski et al. (2025). Type Enforced: A Python type enforcer for type annotations. Journal of Open Source Software, 10(113), 8832. 2

https://doi.org/10.21105/joss.08832.

https://doi.org/10.21105/joss.08832

The Journal of Open Source Software

Enforce (Keith-Magee, 2016): Provides basic runtime enforcement but does not support
advanced typing features such as deeply nested structures or constraint-based validations.
Marshmallow (Loria, 2013): Marshmallow provides serialization, deserialization, and
validation of complex data structures, with support for custom validation logic. It is
commonly used in web frameworks for AP| data validation.

type_enforced: In contrast to the above, type_enforced offers decorator-based runtime
enforcement of Python type annotations, including support for nested structures, custom
constraints, and inheritance-aware validation. Its focus is on minimal boilerplate and
compatibility with modern Python typing constructs, making it suitable for research and
collaborative environments where correctness and ease of use are paramount.

Discussion

The diversity of tools reflects the dual nature of Python's type system—supporting both
static and dynamic paradigms. As Rak-amnouykit et al. (2020) demonstrate, the adoption
of type annotations is increasing, but real-world usage patterns remain heterogeneous, and
the semantics of type checking tools can differ in subtle but important ways. Packages
like type_enforced complement this landscape by providing runtime guarantees that static
checkers cannot, especially in collaborative or data-driven research settings. Compared to
these tools, type_enforced uniquely combines comprehensive type annotation enforcement
with powerful constraint validation capabilities and inheritance-aware checks.

Usage Example

A simple example demonstrating basic usage:

import type_enforced

@type_enforced.Enforcer()
def calculate_area(width: int | float, height: int | float) -> int | float:

return width * height

calculate_area(3.0, 4.5)
calculate_area('3', 4.5)

An example demonstrating constraint validation:

import type_enforced
from type_enforced.utils import Constraint

@type_enforced.Enforcer()
def positive_integer(value: int | Constraint(ge=0)) -> int:

return value

positive_1integer(10)
positive_1integer(-5)

Acknowledgments

Development of this software was supported by:

= MIT Center for Transportation & Logistics (CTL)
= MIT Computational Analytics, Visualization & Education Lab (CAVE)

Makowski et al. (2025). Type Enforced: A Python type enforcer for type annotations. Journal of Open Source Software, 10(113), 8832. 3

https://doi.org/10.21105/joss.08832.

https://doi.org/10.21105/joss.08832

SS

The Journal of Open Source Software

References

Colvin, S., Jolibois, E., Ramezani, H., GarciaBadaracco, A., Dorsey, T., Montague, D.,
Matveenko, S., Trylesinski, M., Runkle, S., Hewitt, D., Hall, A., & Plot, Victorien. (2017).
Pydantic (v2.11.7). Zenodo. https://doi.org/10.5281 /zenodo.15662245

Google. (2024). Pytype (Version 2024.10.11). https://github.com/google/pytype
Grénholm, A. (2016). Typeguard (Version 4.4.4). https://github.com/agronholm /typeguard
Keith-Magee, R. (2016). Enforce (Version 0.3.4). https://github.com/RussBaz/enforce

Lehtosalo, J., & Mypy contributors, the. (2012). Mypy (Version 1.16.1). https://github.com/
python/mypy

Loria, S. (2013). marshmallow (Version 4.0.0). https://github.com/marshmallow-code/
marshmallow

Microsoft Corporation. (2025). Pyright (Version 1.1.405). https://github.com/microsoft/
pyright

Rak-amnouykit, |., McCrevan, D., Milanova, A., Hirzel, M., & Dolby, J. (2020). Python
3 Types in the Wild: A Tale of Two Type Systems. Proceedings of the 16th ACM

SIGPLAN International Symposium on Dynamic Languages, 57-70. https://doi.org/10.
1145/3426422.3426981

Makowski et al. (2025). Type Enforced: A Python type enforcer for type annotations. Journal of Open Source Software, 10(113), 8832. 4
https://doi.org/10.21105/joss.08832.

https://doi.org/10.5281/zenodo.15662245
https://github.com/google/pytype
https://github.com/agronholm/typeguard
https://github.com/RussBaz/enforce
https://github.com/python/mypy
https://github.com/python/mypy
https://github.com/marshmallow-code/marshmallow
https://github.com/marshmallow-code/marshmallow
https://github.com/microsoft/pyright
https://github.com/microsoft/pyright
https://doi.org/10.1145/3426422.3426981
https://doi.org/10.1145/3426422.3426981
https://doi.org/10.21105/joss.08832

	Summary
	Statement of Need
	Functionality and Features
	Related Work
	Static Type Checkers
	Runtime Type Checkers and Data Validation
	Discussion

	Usage Example
	Acknowledgments
	References

