
pychoco: all-inclusive Python bindings for the
Choco-solver constraint programming library
Dimitri Justeau-Allaire 1 and Charles Prud’homme 2¶

1 AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France 2 TASC, IMT-Atlantique,
LS2N-CNRS, Nantes, France ¶ Corresponding author

DOI: 10.21105/joss.08847

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @IgnaceBleukx
• @skadio

Submitted: 12 August 2025
Published: 29 September 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Constraint Programming (CP) is a well-established and powerful Artificial Intelligence (AI)
paradigm for modelling and solving complex combinatorial problems (Rossi et al., 2006). Many
CP solvers are currently available, and despite a generally shared common base, each solver
exhibits specific features that make it more or less suited to certain types of problems and tasks.
Performance and flexibility are important features of CP solvers, which is why most state-of-
the-art solvers rely on statically typed and compiled programming languages, such as Java or
C++. Because of this, CP has long remained a niche field that is difficult for non-specialists
to access. Recently, the emergence of high-level, solver-independent modelling languages such
as MiniZinc (Nethercote et al., 2007), XCSP³ (Audemard et al., 2020), and CPMpy (Guns,
2019) has made CP more accessible by allowing users to seamlessly use state-of-the-art solvers
from user-friendly interpreted languages such as Python. To make CP even more accessible to
a wider audience, we developed pychoco, a Python library that provides an all-inclusive binding
to the Java Choco-solver library (Prud’homme & Fages, 2022). By all-inclusive, we mean that
pychoco has no external dependencies and does not require the installation of Choco-solver or
Java on the user’s system. The choice of Python was motivated by its widespread use in the
data science and AI communities, as well as its extensive use in education. The pychoco Python
library supports almost all features of Choco-solver, is regularly updated, and is automatically
built and distributed through PyPI for Linux, Windows, and MacOSX at each release. As a
result, pychoco can seamlessly integrate into high-level constraint modelling Python libraries
such as CPMpy (Guns, 2019) and PyCSP³ (Lecoutre & Szczepanski, 2024). Moreover, users
who need to use features specific to Choco-solver (e.g., graph variables and constraints) can
now rely on pychoco without prior knowledge of Java programming. We believe that along
with initiatives such as CPMpy and PyCSP, the availability of CP technologies in the Python
ecosystem will foster new uses and the appropriation of CP by a wider scientific and industrial
public.

Statement of need
Constraint programming (CP) offers an expressive and flexible modelling paradigm which
has proven efficient and useful in many industrial and academic applications: production
optimization, aircraft scheduling, nurse scheduling (Wallace, 1996), music (Hooker, 2016),
cryptography (Gerault et al., 2016), bioinformatics (Barahona et al., 2011), biodiversity
conservation (Deléglise et al., 2024), agroecology (Challand et al., 2025), wine blending
(Vismara et al., 2016), etc. However, most CP solvers are difficult for non-specialists to access
because they mostly rely on statically typed and compiled programming languages such as
Java or C++. As most data science and AI technologies are available in the Python ecosystem,
it seems timely to make CP technologies more easily accessible in Python. High-level Python
modelling libraries such as CPMpy (Guns, 2019) and PyCSP³ (Lecoutre & Szczepanski, 2024)

Justeau-Allaire, & Prud’homme. (2025). pychoco: all-inclusive Python bindings for the Choco-solver constraint programming library. Journal of
Open Source Software, 10(113), 8847. https://doi.org/10.21105/joss.08847.

1

https://orcid.org/0000-0003-4129-0764
https://orcid.org/0000-0002-4546-9027
https://doi.org/10.21105/joss.08847
https://github.com/openjournals/joss-reviews/issues/8847
https://github.com/chocoteam/pychoco
https://doi.org/10.5281/zenodo.17219306
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/IgnaceBleukx
https://github.com/skadio
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08847

have opened up many perspectives in this direction, but several solvers still require a separate
installation, especially commercial ones and those based on JVM (Java Virtual Machine)
languages, such as Choco-solver. For most Python users, this can be an obstacle. It also limits
direct solver access and the use of specific features and fine-tuning options that may not be
available in high-level modelling libraries. Making Choco-solver more accessible to Python
users and facilitating its integration as a backend solver into high-level modelling libraries were
the main motivations for the creation of pychoco. In addition, the widespread use of Python
in education was also an argument in favour of pychoco’s implementation.

Design
For several years, the main obstacle to implementing Python bindings for Choco-solver was
the necessity to set up communication between the Python interpreter and the Java Virtual
Machine (JVM). Indeed, we believe that the main interest of such bindings was to offer Python
users a way to use Choco-solver without installing the JVM. The GraalVM project removed
this obstacle with the ahead-of-time Native image Java compilation feature. Inspired by the
work of (Michail et al., 2020) to make Python bindings for the JGraphT Java library, we
implemented choco-solver-capi, which contains entry points to the Choco-solver library that
GraalVM compiles as a shared C library. This shared library is embedded into pychoco with
the SWIG wrapper. pychoco’s API relies on this SWIG interface and has been designed to
mirror the main concepts of the Choco-solver API while simplifying its usage in a Pythonic
way. We implemented pychoco with software quality standards: unit tests, code review, and
continuous integration. We also rely on the cibuildwheel Python library to automatically build
and publish Python wheels on PyPI for Windows, MacOSX, and Linux, from Python 3.6
to Python 3.13. Finally, in addition to comprehensive code documentation, we integrated
pychoco code snippets in Choco-solver online documentation (https://choco-solver.org/) and
we designed a Cheat Sheet to summarize the main features of pychoco’s API Figure 1.

Figure 1: The pychoco Cheat Sheet provides a concise reference for discovering the API.

Justeau-Allaire, & Prud’homme. (2025). pychoco: all-inclusive Python bindings for the Choco-solver constraint programming library. Journal of
Open Source Software, 10(113), 8847. https://doi.org/10.21105/joss.08847.

2

https://www.graalvm.org/
https://github.com/chocoteam/choco-solver-capi
https://github.com/swig/swig
https://github.com/pypa/cibuildwheel
https://github.com/chocoteam/pychoco/blob/master/docs/pychoco-cheatsheet.pdf
https://doi.org/10.21105/joss.08847

A classical example: the Sudoku solver
We illustrate the use of pychoco with one of the most emblematic CP examples: the Sudoku.
In the following code, we instantiate a Sudoku instance.

sudoku = [

[4, 0, 2, 0, 0, 0, 9, 7, 3],

[0, 0, 0, 7, 4, 0, 6, 0, 8],

[8, 0, 0, 0, 0, 9, 5, 1, 4],

[7, 0, 0, 0, 0, 8, 0, 0, 0],

[5, 9, 3, 0, 0, 6, 1, 8, 0],

[0, 2, 8, 0, 0, 0, 0, 5, 9],

[3, 1, 0, 0, 0, 2, 8, 9, 5],

[0, 0, 0, 0, 8, 0, 0, 4, 1],

[9, 0, 7, 1, 0, 4, 2, 0, 6]

]

As a reminder, the goal of Sudoku is to fill every empty cell (in our case, zeros) with a number
between 1 and 9 such that each row, each column, and each of the nine 3x3 subgrids contains
the numbers from 1 to 9 without repetition. It is easy to model our Sudoku solver with
pychoco.

from pychoco import * # Import pychoco

model = Model("Sudoku Solver") # Instantiate a model object

Instantiate the variables of the model

intvars = []

for row in range(0, 9):

var_row = []

for col in range(0, 9):

value = sudoku[row][col]

integer variable with a lower/bound or a fixed value

is_fixed = value != 0

intvar = model.intvar(value) if is_fixed else model.intvar(1, 9)

var_row.append(intvar)

intvars.append(var_row)

For each row, post an all_different constraint

for row in range(0, 9):

var_row = intvars[row]

model.all_different(var_row).post()

For each column, post an all_different constraint

for col in range(0, 9):

var_column = [row[col] for row in intvars]

model.all_different(var_column).post()

For each 3x3 subgrid, post an all_different constraint

for i in range(0, 3):

line = intvars[i * 3 : i * 3 + 3]

for j in range(0, 3):

var_subgrid = sum([l[j * 3 : j * 3 + 3] for l in line], [])

model.all_different(var_subgrid).post()

We can now solve our Sudoku by calling the solver, and then we can display the solution.

Justeau-Allaire, & Prud’homme. (2025). pychoco: all-inclusive Python bindings for the Choco-solver constraint programming library. Journal of
Open Source Software, 10(113), 8847. https://doi.org/10.21105/joss.08847.

3

https://doi.org/10.21105/joss.08847

solver = model.get_solver()

solution = solver.find_solution() # Call the solver to retrieve a solution

for row in range(0, 9):

line = [solution.get_int_val(v) for v in intvars[row]]

print(line)

Output:

[4, 5, 2, 8, 6, 1, 9, 7, 3]

[1, 3, 9, 7, 4, 5, 6, 2, 8]

[8, 7, 6, 2, 3, 9, 5, 1, 4]

[7, 4, 1, 5, 9, 8, 3, 6, 2]

[5, 9, 3, 4, 2, 6, 1, 8, 7]

[6, 2, 8, 3, 1, 7, 4, 5, 9]

[3, 1, 4, 6, 7, 2, 8, 9, 5]

[2, 6, 5, 9, 8, 3, 7, 4, 1]

[9, 8, 7, 1, 5, 4, 2, 3, 6]

Note that, although this problem is a constraint satisfaction problem with exactly one solution
(by definition of the classic Sudoku), pychoco supports solving constrained optimisation
problems, and enumerating multiple solutions. Several search strategies are also available, as
well as parallel portfolio search, as defined in Choco-solver. Other usage examples are available
as a Jupyter notebook in pychoco’s GitHub repository.

Current usages and perspectives
Since its first release in October 2022, pychoco has been downloaded more than 100k times
from PyPI. It is available as a backend solver in the CPMpy high-level modelling library. We
also witness academic uses of pychoco that seem to be made possible or facilitated by the
Python ecosystem. For example, the availability of pychoco in CPMpy seems to facilitate
comparative analyses between different solvers accessible from Python (Bleukx et al., 2024).
The richness of Python’s ecosystem also fosters the integration of CP in workflows involving
several AI techniques (Hotz et al., 2024) and the development of new tools based on CP
(e.g., pyagroplan). Finally, as Python is increasingly used in teaching and training, it seems
natural to teach CP using Python, especially for non-computer-scientist audiences (e.g., AI for
ecologists’ training course).

Acknowledgement
We acknowledge the developers of Python-JGraphT, whose work inspired the development of
pychoco, and all contributors to pychoco.

References
Audemard, G., Boussemart, F., Lecoutre, C., Piette, C., & Roussel, O. (2020). XCSP3 and its

ecosystem. Constraints, 25(1), 47–69. https://doi.org/10.1007/s10601-019-09307-9

Barahona, P., Krippahl, L., & Perriquet, O. (2011). Bioinformatics: A challenge to constraint
programming. In Hybrid optimization (pp. 463–487). Springer. https://doi.org/10.1007/
978-1-4419-1644-0_14

Bleukx, I., Verhaeghe, H., Tsouros, D., & Guns, T. (2024). Efficient modeling of half-reified
global constraints. The 23rd Workshop on Constraint Modelling and Reformulation, Date:
2024/09/02-2024/09/02, Location: Gerona, Spain.

Justeau-Allaire, & Prud’homme. (2025). pychoco: all-inclusive Python bindings for the Choco-solver constraint programming library. Journal of
Open Source Software, 10(113), 8847. https://doi.org/10.21105/joss.08847.

4

https://github.com/chocoteam/pychoco/tree/master/examples/notebooks
https://github.com/CPMpy/cpmpy
https://github.com/philippevismara/pyagroplan
https://ai-ecol.github.io/
https://ai-ecol.github.io/
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.1007/978-1-4419-1644-0_14
https://doi.org/10.1007/978-1-4419-1644-0_14
https://doi.org/10.21105/joss.08847

Challand, M., Vismara, P., & de Tourdonnet, S. (2025). Combining constraint programming
and a participatory approach to design agroecological cropping systems. Agricultural
Systems, 222, 104154. https://doi.org/10.1016/j.agsy.2024.104154

Deléglise, H., Justeau-Allaire, D., Mulligan, M., Espinoza, J.-C., Isasi-Catalá, E., Alvarez, C.,
Condom, T., & Palomo, I. (2024). Integrating multi-objective optimization and ecological
connectivity to strengthen Peru’s protected area system towards the 30*2030 target.
Biological Conservation, 299, 110799. https://doi.org/10.1016/j.biocon.2024.110799

Gerault, D., Minier, M., & Solnon, C. (2016). Constraint programming models for chosen key
differential cryptanalysis. International Conference on Principles and Practice of Constraint
Programming, 584–601. https://doi.org/10.1007/978-3-319-44953-1_37

Guns, T. (2019). Increasing modeling language convenience with a universal n-dimensional
array, CPpy as Python-embedded example. Proceedings of the 18th Workshop on Constraint
Modelling and Reformulation at CP (Modref 2019), 19.

Hooker, J. N. (2016). Finding alternative musical scales. International Conference on
Principles and Practice of Constraint Programming, 753–768. https://doi.org/10.1007/
978-3-319-44953-1_47

Hotz, L., Bähnisch, C., Lubos, S., Felfernig, A., Haag, A., & Twiefel, J. (2024). Exploiting
large language models for the automated generation of constraint satisfaction problems.
3812, 91–100.

Lecoutre, C., & Szczepanski, N. (2024). PyCSP3: Modeling combinatorial constrained problems
in Python (No. arXiv:2009.00326). arXiv. https://doi.org/10.48550/arXiv.2009.00326

Michail, D., Kinable, J., Naveh, B., & Sichi, J. V. (2020). JGraphT—a Java library for graph
data structures and algorithms. ACM Transactions on Mathematical Software (TOMS),
46(2), 1–29. https://doi.org/10.1145/3381449

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., & Tack, G. (2007). MiniZinc:
Towards a standard CP modelling language. In C. Bessière (Ed.), Principles and Practice of
Constraint Programming – CP 2007 (Vol. 4741, pp. 529–543). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-74970-7_38

Prud’homme, C., & Fages, J.-G. (2022). Choco-solver: A Java library for constraint program-
ming. Journal of Open Source Software, 7 (78), 4708. https://doi.org/10.21105/joss.04708

Rossi, F., Beek, P. van, & Walsh, T. (Eds.). (2006). Handbook of constraint programming
(Vol. 2). Elsevier. ISBN: 978-0-444-52726-4

Vismara, P., Coletta, R., & Trombettoni, G. (2016). Constrained global optimization for wine
blending. Constraints, 21(4), 597–615. https://doi.org/10.1007/s10601-015-9235-5

Wallace, M. (1996). Practical applications of constraint programming. Constraints, 1(1-2),
139–168. https://doi.org/10.1007/BF00143881

Justeau-Allaire, & Prud’homme. (2025). pychoco: all-inclusive Python bindings for the Choco-solver constraint programming library. Journal of
Open Source Software, 10(113), 8847. https://doi.org/10.21105/joss.08847.

5

https://doi.org/10.1016/j.agsy.2024.104154
https://doi.org/10.1016/j.biocon.2024.110799
https://doi.org/10.1007/978-3-319-44953-1_37
https://doi.org/10.1007/978-3-319-44953-1_47
https://doi.org/10.1007/978-3-319-44953-1_47
https://doi.org/10.48550/arXiv.2009.00326
https://doi.org/10.1145/3381449
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.21105/joss.04708
https://www.sciencedirect.com/science/bookseries/15746526/2
https://doi.org/10.1007/s10601-015-9235-5
https://doi.org/10.1007/BF00143881
https://doi.org/10.21105/joss.08847

	Summary
	Statement of need
	Design
	A classical example: the Sudoku solver
	Current usages and perspectives
	Acknowledgement
	References

