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Summary

Distributed sensor networks monitor environmental conditions at remote locations. Each sensor
node produces various time series data streams and system logs and sends this data to a central
backend. A “sensor node" is an autonomous system collecting data from one or multiple
sensors connected to it, operated 24/7 by a Data Acquisition System (DAS). As part of the
ICOS Cities PAUL Project (European Commission, 2021), our group has developed a network
of 20 autonomous GHG (greenhouse gas) sensor nodes (Aigner et al., 2024).

Since the software architecture of a DAS is independent of a specific sensor network, we present
Ivy — a boilerplate codebase and architecture for a DAS that supports configuring and updating
itself remotely. Research teams building a new sensor network can use lvy as a base for their
own network-specific DAS. lvy provides the core architecture, and users of the boilerplate
codebase only have to plug in their network-specific hardware logic to make it operational. lvy
is designed to be customized: one can switch to another documentation system, add another
backend, or remove unused parts of lvy.
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Figure 1: System architecture of a distributed sensor network based on a DAS like lvy.

The architecture of lvy shown in Figure 1 results from many iterations of the sensor networks
our research group has built and operated (Aigner et al., 2023; Dietrich et al., 2021; TUM
ESM et al., 2024). This publication aims to share a reference architecture of how a reliable
DAS can be built, not claiming that Ivy is the only architecture for this use case.
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Statement of Need and Similar Efforts

Continuous monitoring of our environment improves our understanding of anthropogenic
impacts on the environment (IPCC, 2021, 2022). Distributed sensor networks are used to
monitor atmospheric composition (Bares et al., 2019; Dietrich et al., 2021; The Berkeley
Atmospheric CO, Observation Network, n.d.), forest ecosystems (Anderson-Teixeira et al.,
2014; Zweifel et al., 2021, 2023), soil composition (Al-Yaari et al., 2018; Bogena et al., 2022;
Dorigo et al., 2021), and air quality (Caubel et al., 2019; Popoola et al., 2018; Wenzel et al.,
2021, 2025).

These sensor networks are typically built in a waterfall process: first, the DAS software is
written, then the sensor nodes are deployed. However, many studies report post-deployment
failures that can only be fixed by visiting sites in person (Bart et al., 2014; Tolle & Culler,
2005). A DAS allowing component failures and supporting remote reconfiguration and software
updates enables teams to deploy their sensor nodes early and continuously improve their
software remotely.

Many backends support collecting data from distributed sensor nodes. The FROST Server
(Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, 2024) imple-
ments the OGC SensorThings API specification (Open Geoscience Consortium, 2024). The
Things Network (The Things Network, 2024) is a platform to manage LoRaWAN devices using
The Things Stack (The Things Stack, 2024). Thingsboard (ThingsBoard, 2024a) and Tenta
(Bdhm et al., 2025) are similar backends offering MQTT and HTTP APIs to store and retrieve
sensor network data.

Backends often provide client libraries (Makowski, 2024; ThingsBoard, 2024b; Vogl, 2023),
but the complete code autonomously operating a specific network’s sensor nodes is rarely
published. This lack of open-sourced architectures makes it hard to assess how systems like
this are built. Wireless Sensor Networks (WSNs), which have been widely studied (Kandris et
al., 2020), consist of a “base station” communicating with many distributed “motes”. However,
Ivy focuses on the architecture of many distributed autonomous base stations, not motes.
Basing a DAS on the Robot Operating System (ROS) (Macenski et al., 2022; Quigley et al.,
2009) is a reasonable choice for environmental sensing applications. However, one still has
to write the operational logic of the DAS because ROS only comes with the communication
infrastructure. Both WSNs and ROS are complementary to lvy since lvy can operate a base
station of a WSN or run inside a ROS node.

The Hermes software (TUM ESM et al., 2024) driving the Acropolis network has been open-
sourced' and used from early 2023 to early 2025, enabling our group to deploy 38 software
updates to the network. By now, this sensor network uses a modified variant of Hermes,
Acropolis-Edge (TUM ESM et al., 2025), that runs the DAS inside a container and separates
the DAS from the updater. However, both Hermes and Acropolis-Edge are not directly reusable
for similar networks since they are tailored to the Acropolis network. lvy refines the DAS
architecture of Hermes and Pyra (Aigner et al., 2023; Dietrich et al., 2021) and makes it
reusable for other sensor networks.

General System Design

Ivy uses a config.json file to store its active configuration. It can receive new configurations
from the backend, change the config file it runs with, or perform a software update. The
software update logic is built into the DAS, meaning it can also be updated. Figure 2 shows
the update process of Ivy, which ensures that the DAS does not update itself to a version that
does not run on the local hardware.

Thttps://github.com /tum-esm/hermes
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Figure 2: The software update process of lvy.

Ivy comes with connectors for two backends out of the box — Thingsboard and Tenta — and
uses the MQTT protocol to communicate with them. Nevertheless, lvy is not bound to a
specific backend or communication protocol. This flexibility prevents vendor lock-in and makes
Ivy's implementation more reusable. We are happy to support more backends out of the box
in the future, like Strapi (Strapi, 2024), Kuzzle (Kuzzle 10, 2024), or FROST. Furthermore,
many utility functions have been moved to the tum-esm-utils Python package (Makowski et
al., 2025).

Evolution of the Runtime Model

Whereas Hermes, Acropolis-Edge, and earlier versions of Pyra run much of the logic on a
single thread, lvy uses a fully parallel architecture, eliminating the possibility of one faulty
component blocking other components. Each block of functionality running in an infinite loop
is packaged into a “procedure”. The “mainloop” is only responsible for managing procedure
lifecycles and handling configuration changes. Starting with Pyra version 4.2, Pyra follows this
parallel architecture of lvy. Figure 3 shows the communication structure within Ivy.
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Figure 3: The communication between lvy procedures.

Testing and Documentation

Ivy is statically typed and tested using Mypy (Python, 2024). Its test suite contains a test
that tries to update a known working version to the current codebase and a test that tries
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to update the current codebase to a known working version. Ivy's API reference is generated
automatically from the codebase and contains rendered schema references for all JSON files
users interact with (configuration, local message archive, shared state).
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