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Summary
Solving the Bethe-Salpeter Equation (BSE) is essential for understanding excited-state systems,
but often challenging to converge or even computationally prohibitive for large systems.
We implement a matrix-free BSE solver leveraging Interpolative Separable Density Fitting
(ISDF) to interpolate electron-hole interaction kernels together with the Lanczos algorithm for
diagonalization, avoiding full matrix setup. The scaling of our implementation is bounded by
𝒪(𝑁𝑜𝑁𝑢𝑁k log𝑁k) and is thus a massive improvement over methods that set up the whole
matrix, scaling with at least 𝒪((𝑁𝑜𝑁𝑢𝑁k)3), where 𝑁𝑜 and 𝑁𝑢 are the numbers of occupied
and unoccupied states, respectively, and 𝑁k is the number k-points.

Theoretical background
The Bethe-Salpeter Equation (BSE) within many body perturbation theory (MBPT) provides
the state-of-the-art framework for describing light-matter interaction. In particular, it is
used to obtain optical absorption spectra, including the effects of excitons, which are bound
electron-hole states. By expanding the electron-hole wavefunctions in the transition basis,
solving the BSE can be reduced to a Schrödinger-like equation. Setting up and diagonalizing
the Bethe-Salpeter Hamiltonian (BSH) are the computationally expensive tasks (Vorwerk et
al., 2019). The BSH is given as

𝐻𝐵𝑆𝐻 = 𝐷+ 𝛾𝑉 −𝑊 ,

where 𝛾 = 2 gives the spin-singlet and 𝛾 = 0 spin-triplet channel, respectively. The diagonal
term 𝐷 is given by the differences of the one-particle energies of the occupied (𝑜) and
unoccupied (𝑢) states:

𝐷𝑜𝑢k,𝑜′𝑢′k′ = (𝜀𝑢k − 𝜀𝑜k)𝛿𝑜𝑜′𝛿𝑢𝑢′𝛿kk′ .

The matrix elements of the repulsive exchange interaction 𝑉 and the attractive screened
Coulomb interaction 𝑊 are calculated by solving integrals of the form

𝑉𝑜𝑢k,𝑜′𝑢′k′ = ∫𝑑3𝑟∫𝑑3𝑟′
𝑢𝑜k(r)𝑢∗

𝑢k(r)𝑢∗
𝑜′k′(r′)𝑢𝑢′k′(r′)

|r − r′|
,

𝑊𝑜𝑢k,𝑜′𝑢′k′ = ∫𝑑3𝑟∫𝑑3𝑟′𝑢∗
𝑢k(r)𝑢𝑢′k′(r)𝑊k−k′(r, r′)𝑢𝑜k(r′)𝑢∗

𝑜′k′(r′) ,

where 𝑊k−k′(r, r′) is the statically screened Coulomb potential. 𝑢𝑖k(r) is the periodic part
of the one-particle wavefunction of state 𝑖 at the reciprocal lattice point k. In general, we
cannot see which of the matrix elements will be zero, thus we need to compute all of them.
Therefore, setting up the full BSH scales with 𝒪(𝑁2

𝑜𝑁2
𝑢𝑁2

k ) and diagonalizing it directly with
𝒪(𝑁3

𝑜𝑁3
𝑢𝑁3

k ).
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The primary scaling bottleneck stems from evaluating the matrix elements of the interaction
kernels. To mitigate this, we reformulate the wavefunction products using Interpolative
Separable Density Fitting (ISDF) (Lu & Ying, 2015, 2016). Specifically, we approximate these
products on a discrete real-space grid, {r}, by expressing them as superpositions of values
evaluated on a smaller interpolation grid, {r𝜇} ⊂ {r}:

𝑢∗
𝑖k(r)𝑢𝑗k′(r) ≈

𝑁𝜇

∑
𝜇=1

𝜁𝜇(r)𝑢∗
𝑖k(r𝜇)𝑢𝑗k(r𝜇) ,

where 𝑁𝜇 is the number of interpolation points, and 𝜁𝜇(r) are the expansion coefficients.
Due to the tensor product structure of 𝑢∗

𝑖k(r)𝑢𝑗k′(r), 𝜁𝜇(r) can be computed efficiently, and
the scaling is bounded by 𝒪(𝑁3

𝜇) (Hu et al., 2017). We observe that we can always choose
𝑁𝜇 ≪ 𝑁𝑜𝑁𝑢𝑁k, thus ISDF is never a bottleneck. The interpolation points are computed
efficiently with centroidal Voronoi tessellation within 𝒪(𝑁𝜇𝑁𝑟) (Dong et al., 2018).

Replacing the wavefunction products in the interaction kernel integrals with the ISDF
representation yields a formulation that allows for efficient application to a vector without ever
setting up the full matrix. Combined with a Lanczos algorithm, the BSE can be solved with a
scaling of 𝒪(𝑁𝑜𝑁𝑢𝑁𝑘 log𝑁𝑘) (Henneke et al., 2020).

Statement of need
Due to the unfavorable scaling of solving the BSE directly, many interesting problems such as
complex materials with large unit cells or systems requiring a dense Brillouin-zone sampling
are not feasible. Even though Henneke and coworkers (Henneke et al., 2020) have already
described the new algorithm and demonstrated the scaling improvement, an easy-to-use and
scalable implementation was still missing. We have implemented and fully integrated this
approach in the existing BSE infrastructure of the all-electron, full-potential package exciting
(Gulans et al., 2014). Users can now easily choose which algorithm they prefer to use and
have the full suite of exciton analysis implemented in exciting at hand.

Results
For computing the ISDF, two new parameters, 𝑛r and 𝑐𝜇, are introduced. 𝑛r is the real-space
sampling density for 𝑢𝑖k(r) and is defined as

𝑛r =
𝑁r
Ω

,

where 𝑁r is the number of r-points and Ω the unit cell volume. The sampling is chosen to be
regular such that the distance between the sampling points in each lattice direction is as similar
as possible. The dimensionless parameter 𝑐𝜇 is used to control the number of interpolation
points and is defined as

𝑁𝜇 = 𝑐𝜇√√𝑁pairs ,

where 𝑁pairs refers to the number of wave function pairs for which ISDF is computed. Note
that 𝑁pairs depends on 𝑁k. The double square-root dependence ensures that the overall scaling
remains below 𝒪(𝑁2

k ). In Figure 1 we present, for the example of diamond, the difference in
exciton binding energies obtained with the new implementation and a reference calculation.
The reference, based on the direct implementation, sets up and diagonalizes the full BSH and
depends neither on 𝑛r nor 𝑐𝜇. The results are shown as functions of 𝑛r and 𝑐𝜇 for a small
k-grid of 2 × 2 × 2. Additionally, we show the spectral similarities compared to the reference
calculation as functions of 𝑛r and 𝑐𝜇. For both parameters, both properties converge as their
values increase. To find the optimal interpolation grid for ISDF, we first converge 𝑛r, then

Maurer, & Draxl. (2026). Low scaling BSE implementation in the exciting code. Journal of Open Source Software, 11(118), 8866. https:
//doi.org/10.21105/joss.08866.

2

https://doi.org/10.21105/joss.08866
https://doi.org/10.21105/joss.08866


𝑐𝜇. In our example, 𝑛r = 138 [a.u.] and 𝑐𝜇 = 40.0 yield converged results. This corresponds
to a real-space sampling of 22 × 22 × 22 and numbers of interpolation points 𝑁𝑉

𝜇 = 202,
𝑁𝑊𝑜𝜇 = 322, and 𝑁𝑊𝑢𝜇 = 360.

Figure 1: Difference of the exciton binding energy Δ𝐸b and spectral similarity 𝑆 between the new
method and the direct method as functions of 𝑛r (upper panel) and 𝑐𝜇 (lower panel) for diamond on a
2 × 2 × 2 k-grid.

In Figure 2, we compare the exciton binding energies Δ𝐸b and spectra of the new
implementation to those of the old implementation for increasing k-grids, while keeping 𝑛r as
well as 𝑁𝑉

𝜇 , 𝑁𝑊𝑜𝜇 , and 𝑁𝑊𝑢𝜇 fixed at the values above. We observe that the results converge
as 𝑁k increases. Thus, the number of interpolation points is asymptotically independent of
𝑁k. A similar behavior of ISDF was observed in (Lu & Ying, 2016).
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Figure 2: Difference of the exciton binding energy and spectral similarity between the new method and
the direct method as functions of 𝑁k for diamond.

In Figure 3, we show the wall times for solving the BSE with the new and direct implementations
for increasing 𝑁k. The new algorithm massively outperforms the direct one, and the speedup
increases more than linearly with 𝑁k. We also show the wall times for computing the RPA
screening with increasing 𝑁k, which is now clearly the bottleneck in solving the BSE.

Figure 3: Runtimes of the direct (black) and new (red) BSE implementations and the RPA screening
(blue) as functions of 𝑁k. The speedup of the algorithm is shown by the gray dashed line.

Altogether, we have implemented a new, low-scaling BSE solver and fully integrated it into
the all-electron, full-potential package exciting. We demonstrate that the new implementation
yields results equivalent to the direct solution of the BSE but with significantly reduced
computational time. Consequently, it enables more precise calculations and facilitates the
study of more complex problems.
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