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Summary

Solving the Bethe-Salpeter Equation (BSE) is essential for understanding excited-state systems,
but often challenging to converge or even computationally prohibitive for large systems.
We implement a matrix-free BSE solver leveraging Interpolative Separable Density Fitting
(ISDF) to interpolate electron-hole interaction kernels together with the Lanczos algorithm for
diagonalization, avoiding full matrix setup. The scaling of our implementation is bounded by
O(N,N,N, log N,) and is thus a massive improvement over methods that set up the whole
matrix, scaling with at least O((N,N, N, )3), where N, and N,, are the numbers of occupied
and unoccupied states, respectively, and N, is the number k-points.

Theoretical background

The Bethe-Salpeter Equation (BSE) within many body perturbation theory (MBPT) provides
the state-of-the-art framework for describing light-matter interaction. In particular, it is
used to obtain optical absorption spectra, including the effects of excitons, which are bound
electron-hole states. By expanding the electron-hole wavefunctions in the transition basis,
solving the BSE can be reduced to a Schrédinger-like equation. Setting up and diagonalizing
the Bethe-Salpeter Hamiltonian (BSH) are the computationally expensive tasks (Vorwerk et
al., 2019). The BSH is given as

HBSH — D4V - W,

where v = 2 gives the spin-singlet and v = 0 spin-triplet channel, respectively. The diagonal
term D is given by the differences of the one-particle energies of the occupied (o) and
unoccupied (u) states:

Douk,o"u/k’ = (8uk - 80k)5oo’ 5uu’ 6kk’ :

The matrix elements of the repulsive exchange interaction V and the attractive screened
Coulomb interaction W are calculated by solving integrals of the form

u . (r)u, (r)u*,,, (v u r’
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where W, _,/(r,r”) is the statically screened Coulomb potential. u;, (r) is the periodic part
of the one-particle wavefunction of state ¢ at the reciprocal lattice point k. In general, we
cannot see which of the matrix elements will be zero, thus we need to compute all of them.
Therefore, setting up the full BSH scales with O(N2N2N2) and diagonalizing it directly with
O(NZ NS N?).
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The primary scaling bottleneck stems from evaluating the matrix elements of the interaction
kernels. To mitigate this, we reformulate the wavefunction products using Interpolative
Separable Density Fitting (ISDF) (Lu & Ying, 2015, 2016). Specifically, we approximate these
products on a discrete real-space grid, {r}, by expressing them as superpositions of values
evaluated on a smaller interpolation grid, {r,} C {r}:

W () (r) ~ Z () (v, )ug(r,)

where N, is the number of interpolation points, and Cu(r) are the expansion coefficients.
Due to the tensor product structure of uj, (r)u ;e (r), ¢, (r) can be computed efficiently, and
the scaling is bounded by O(Ni) (Hu et al., 2017). We observe that we can always choose
N, < N,N,Ny, thus ISDF is never a bottleneck. The interpolation points are computed
efficiently with centroidal Voronoi tessellation within O(NV, N,.) (Dong et al., 2018).

Replacing the wavefunction products in the interaction kernel integrals with the ISDF
representation yields a formulation that allows for efficient application to a vector without ever
setting up the full matrix. Combined with a Lanczos algorithm, the BSE can be solved with a
scaling of O(N,N, N, log N;,) (Henneke et al., 2020).

Statement of need

Due to the unfavorable scaling of solving the BSE directly, many interesting problems such as
complex materials with large unit cells or systems requiring a dense Brillouin-zone sampling
are not feasible. Even though Henneke and coworkers (Henneke et al., 2020) have already
described the new algorithm and demonstrated the scaling improvement, an easy-to-use and
scalable implementation was still missing. We have implemented and fully integrated this
approach in the existing BSE infrastructure of the all-electron, full-potential package exciting
(Gulans et al., 2014). Users can now easily choose which algorithm they prefer to use and
have the full suite of exciton analysis implemented in exciting at hand.

Results

For computing the ISDF, two new parameters, n, and c,,, are introduced. n, is the real-space
sampling density for u;, (r) and is defined as

where N, is the number of r-points and {2 the unit cell volume. The sampling is chosen to be
regular such that the distance between the sampling points in each lattice direction is as similar
as possible. The dimensionless parameter c,, is used to control the number of interpolation
points and is defined as

Nu = Cu Npairs ’
where N, refers to the number of wave function pairs for which ISDF is computed. Note
that IV, depends on Ny. The double square-root dependence ensures that the overall scaling

remains below (N?). In Figure 1 we present, for the example of diamond, the difference in
exciton binding energies obtained with the new implementation and a reference calculation.
The reference, based on the direct implementation, sets up and diagonalizes the full BSH and
depends neither on n, nor ¢,,. The results are shown as functions of n, and ¢, for a small
k-grid of 2 x 2 x 2. Additionally, we show the spectral similarities compared to the reference
calculation as functions of n, and ¢,. For both parameters, both properties converge as their
values increase. To find the optimal interpolation grid for ISDF, we first converge n,, then
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¢, In our example, n, =138 [a.u.] and ¢, = 40.0 yield converged results. This corresponds
to a real-space sampling of 22 X 22 x 22 and numbers of interpolation points N/Y = 202,

N> =322, and N, = 360.
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Figure 1: Difference of the exciton binding energy AE, and spectral similarity S between the new
method and the direct method as functions of n, (upper panel) and ¢, (lower panel) for diamond on a
2 x 2 x 2 k-grid.

In Figure 2, we compare the exciton binding energies AFE, and spectra of the new
implementation to those of the old implementation for increasing k-grids, while keeping n, as
well as NlY, N,YV", and N,YV“ fixed at the values above. We observe that the results converge
as IV} increases. Thus, the number of interpolation points is asymptotically independent of
Ny. A similar behavior of ISDF was observed in (Lu & Ying, 2016).
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Figure 2: Difference of the exciton binding energy and spectral similarity between the new method and
the direct method as functions of N, for diamond.

In Figure 3, we show the wall times for solving the BSE with the new and direct implementations
for increasing Ny.. The new algorithm massively outperforms the direct one, and the speedup
increases more than linearly with IN,,. We also show the wall times for computing the RPA
screening with increasing N,, which is now clearly the bottleneck in solving the BSE.
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Figure 3: Runtimes of the direct (black) and new (red) BSE implementations and the RPA screening
(blue) as functions of N,. The speedup of the algorithm is shown by the gray dashed line.

Altogether, we have implemented a new, low-scaling BSE solver and fully integrated it into
the all-electron, full-potential package exciting. We demonstrate that the new implementation
yields results equivalent to the direct solution of the BSE but with significantly reduced
computational time. Consequently, it enables more precise calculations and facilitates the
study of more complex problems.
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