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Summary

GPUs are gaining popularity due to their massive computational parallelism (Jia et al., 2021)
and usage in interactive graphics (Nguyen, 2007) or machine learning applications (Mittal
& Vaishay, 2019). Prototyping GPU-executed experiments is often time-consuming due to
the complexity of GPU-related APls. Multiplatform and multi-vendor support is also not
guaranteed with all existing APls. The vkCompViz C++ library offers a simple way to write a
GPGPU (general-purpose computing on graphics processing units) (Hu et al., 2016) program.
Only the paths to files with GPU code (shader/kernel), paths to input images, or a buffer of
arbitrary input data need to be provided by the host application. The library is capable of
running a sequence of compute shaders, processing the input data, and storing the result or
presenting it in a window. Memory usage and computational time can also be automatically
measured.

Statement of need

Necessary data allocations and transfers, and the execution of shaders, require a special API that
communicates with the GPU drivers (Henriksen, 2024; Plebaniski et al., 2025). Vendor-specific
GPGPU API CUDA by NVIDIA and HIP by AMD quickly provide access to new GPU features
but can be used only with the given vendor's GPUs. OpenCL is a vendor-free multiplatform
API with a lot of features that are usually not fully supported by drivers. These APIs are only
for GPGPU computations and lack access to GPU rendering features. The subsequent APIs
can use rendering pipelines and GPGPU functions. DirectX does not depend on the vendor,
but is developed by Microsoft and can be used only on Windows. Similarly, Metal works only
on Apple devices. OpenGL is multiplatform and vendor-free, but it does not support new
features and its development is discontinued. Vulkan is multi-platform, vendor-free, supports
new features quickly, and offers low-level optimization settings. The verbosity of Vulkan makes
it difficult to use for quick experiments. A substantial portion of the code is necessary even
for basic functionality. All the APIs also require the host application to allocate data in GPU
memory, load and decode resources like images, transfer the data, create a window, etc.

The vkCompViz library offers a high-level API that significantly simplifies GPU programming.
The library only requires the paths to the code files to be executed on GPU, paths to the
input images, a buffer with arbitrary input data, and a set of parameters. The library then
allocates the necessary memory, creates the GPU-related objects, transfers the data on the
GPU, runs the computation (or rendering) pipeline, and returns or stores the results. The
library can visualize the results in a window, where the parameters can be interactively adjusted
at run-time, or can be run in headless mode on machines with no window systems. The memory
usage and time performance of the data transfer and shader execution reporting mechanism
is also implemented. Users do not need to study complex GPU APlIs to conduct scientific
experiments. This addresses a frequent issue in science, where implementing an experimental
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concept often requires a considerable amount of time due to technical difficulties.

Compared to existing frameworks used in science that simplify the work with Vulkan, such
as vk-bootstrap (Mufioz Lopez & Winston, 2025), or Auto-Vk-Toolkit (Unterguggenberger
et al., 2023), the vkCompViz library does not require in-depth work with the GPU-related
structures. The library is specially designed for quick experimental prototyping. Other
frameworks often focus on specific tasks, such as Datoviz (Rossant & Rougier, 2021) for
scientific data visualization, the framework for remote rendering of large data (Lavri¢ et al.,
2018), and VComputeBench for benchmarking purposes (Mammeri & Juurlink, 2018). The
vkCompViz library aims to be a general GPGPU scientific framework. Kokkos (Trott et al.,
2022) and RAJA (Beckingsale et al., 2019) are C++ abstractions for performance-portable
parallel computation across CPUs and GPUs. In contrast, vkCompViz is GPU-oriented. lts
goal is not only to simplify parallel computing but also visualization and data loading and
provide access to additional GPU capabilities, such as rendering and other features exposed by
Vulkan.

Architecture

The library uses Vulkan (Bailey, 2019), which ensures support for modern operating systems
and GPUs. Vulkan is expected to be further supported in the future and also quickly adopts
novel GPU features which can be possibly used in the library. The input shaders are expected
to be written in the Slang language, which is a universal modern language designed for GPU
shaders. The input images are loaded with the FFmpeg library, which supports a wide range of
multimedia formats. The window is created by the GLFW multi-platform library. The library
workflow and architecture are described in Figure 1.
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Figure 1: The figure describes the architecture of vkCompViz library.

Usage

The project uses CMake, the C++26 standard, and C++20 modules. The usage of the library
is demonstrated and documented in three basic example subprojects. The Simple Blending
example demonstrates operations with images in which two images can be blended together
with a given factor. The 3D Viewer also shows how the rendering pipeline can be customized
to render an input 3D model file. The Parallel Reduction example shows how the library can
be used to accelerate a summation of a big array of numbers. This example demonstrates a
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simple use case of an experimental evaluation of the GPU accelerated algorithm (Jradi et al.,
2020), compared to its CPU variant. The experiment was carried out on a machine equipped
with a NVIDIA GeForce RTX 3060 Ti and Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz CPU,
running Arch Linux. The output of several runs of this example is shown in Figure 2. Figure 3
shows the detailed runs where the GPU started to be faster than CPU. The results show that
computational time is shorter with massively parallel GPU architecture. However, the data
transfer delay increases the total time and shows that using GPU for this use case is viable only
when the data is already generated on GPU or later used there or when the data size reaches
certain amount. This fact is in alignment with previously published findings (Dinkelbach et al.,

2012).
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Figure 2: Comparison of GPU and CPU array summation is shown in the chart.
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Figure 3: The turning point where GPU starts to be faster than CPU for array summation is shown with
two neighboring measurements.
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