The Journal of Open Source Software

DOI: 10.21105/joss.08871

Software
= Review &7
= Repository @
= Archive &0

Editor: Christoph Junghans @
Reviewers:

= @boonth

= @dhelmrich

Submitted: 07 August 2025
Published: 17 January 2026

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

vkCompViz: Universal C4++ Library for GPU-Based
Experiments

Tomas Chlubna ®?

1 Faculty of Information Technology, Brno University of Technology, Czech Republic

Summary

GPUs are gaining popularity due to their massive computational parallelism (Jia et al., 2021)
and usage in interactive graphics (Nguyen, 2007) or machine learning applications (Mittal
& Vaishay, 2019). Prototyping GPU-executed experiments is often time-consuming due to
the complexity of GPU-related APls. Multiplatform and multi-vendor support is also not
guaranteed with all existing APls. The vkCompViz C++ library offers a simple way to write a
GPGPU (general-purpose computing on graphics processing units) (Hu et al., 2016) program.
Only the paths to files with GPU code (shader/kernel), paths to input images, or a buffer of
arbitrary input data need to be provided by the host application. The library is capable of
running a sequence of compute shaders, processing the input data, and storing the result or
presenting it in a window. Memory usage and computational time can also be automatically
measured.

Statement of need

Necessary data allocations and transfers, and the execution of shaders, require a special API that
communicates with the GPU drivers (Henriksen, 2024; Plebaniski et al., 2025). Vendor-specific
GPGPU API CUDA by NVIDIA and HIP by AMD quickly provide access to new GPU features
but can be used only with the given vendor's GPUs. OpenCL is a vendor-free multiplatform
API with a lot of features that are usually not fully supported by drivers. These APIs are only
for GPGPU computations and lack access to GPU rendering features. The subsequent APIs
can use rendering pipelines and GPGPU functions. DirectX does not depend on the vendor,
but is developed by Microsoft and can be used only on Windows. Similarly, Metal works only
on Apple devices. OpenGL is multiplatform and vendor-free, but it does not support new
features and its development is discontinued. Vulkan is multi-platform, vendor-free, supports
new features quickly, and offers low-level optimization settings. The verbosity of Vulkan makes
it difficult to use for quick experiments. A substantial portion of the code is necessary even
for basic functionality. All the APIs also require the host application to allocate data in GPU
memory, load and decode resources like images, transfer the data, create a window, etc.

The vkCompViz library offers a high-level API that significantly simplifies GPU programming.
The library only requires the paths to the code files to be executed on GPU, paths to the
input images, a buffer with arbitrary input data, and a set of parameters. The library then
allocates the necessary memory, creates the GPU-related objects, transfers the data on the
GPU, runs the computation (or rendering) pipeline, and returns or stores the results. The
library can visualize the results in a window, where the parameters can be interactively adjusted
at run-time, or can be run in headless mode on machines with no window systems. The memory
usage and time performance of the data transfer and shader execution reporting mechanism
is also implemented. Users do not need to study complex GPU APlIs to conduct scientific
experiments. This addresses a frequent issue in science, where implementing an experimental

Chlubna. (2026). vkCompViz: Universal C++ Library for GPU-Based Experiments. Journal of Open Source Software, 11(117), 8871. https: 1

//doi.org/10.21105/joss.08871.


https://orcid.org/0000-0003-3126-0545
https://doi.org/10.21105/joss.08871
https://github.com/openjournals/joss-reviews/issues/8871
https://github.com/ichlubna/vkCompViz
https://doi.org/10.5281/zenodo.18258201
https://www.compphys.de/
https://orcid.org/0000-0003-0925-1458
https://github.com/boonth
https://github.com/dhelmrich
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08871
https://doi.org/10.21105/joss.08871

SS

The Journal of Open Source Software

concept often requires a considerable amount of time due to technical difficulties.

Compared to existing frameworks used in science that simplify the work with Vulkan, such
as vk-bootstrap (Mufioz Lopez & Winston, 2025), or Auto-Vk-Toolkit (Unterguggenberger
et al., 2023), the vkCompViz library does not require in-depth work with the GPU-related
structures. The library is specially designed for quick experimental prototyping. Other
frameworks often focus on specific tasks, such as Datoviz (Rossant & Rougier, 2021) for
scientific data visualization, the framework for remote rendering of large data (Lavri¢ et al.,
2018), and VComputeBench for benchmarking purposes (Mammeri & Juurlink, 2018). The
vkCompViz library aims to be a general GPGPU scientific framework. Kokkos (Trott et al.,
2022) and RAJA (Beckingsale et al., 2019) are C++ abstractions for performance-portable
parallel computation across CPUs and GPUs. In contrast, vkCompViz is GPU-oriented. lts
goal is not only to simplify parallel computing but also visualization and data loading and
provide access to additional GPU capabilities, such as rendering and other features exposed by
Vulkan.

Architecture

The library uses Vulkan (Bailey, 2019), which ensures support for modern operating systems
and GPUs. Vulkan is expected to be further supported in the future and also quickly adopts
novel GPU features which can be possibly used in the library. The input shaders are expected
to be written in the Slang language, which is a universal modern language designed for GPU
shaders. The input images are loaded with the FFmpeg library, which supports a wide range of
multimedia formats. The window is created by the GLFW multi-platform library. The library
workflow and architecture are described in Figure 1.

Paths to files

Images

vkCompViz

Multimedia loader

FFmpeg .
- Image files

Shaders

Benchmark

General
input data Shader loader
Data buffer
buffer
Settings GPU Window output
Benchmark report
GLFW
s

Figure 1: The figure describes the architecture of vkCompViz library.

Usage

The project uses CMake, the C++26 standard, and C++20 modules. The usage of the library
is demonstrated and documented in three basic example subprojects. The Simple Blending
example demonstrates operations with images in which two images can be blended together
with a given factor. The 3D Viewer also shows how the rendering pipeline can be customized
to render an input 3D model file. The Parallel Reduction example shows how the library can
be used to accelerate a summation of a big array of numbers. This example demonstrates a

Chlubna. (2026). vkCompViz: Universal C4++ Library for GPU-Based Experiments. Journal of Open Source Software, 11(117), 8871. https: 2
//doi.org/10.21105/joss.08871.


https://doi.org/10.21105/joss.08871
https://doi.org/10.21105/joss.08871

SS

The Journal of Open Source Software

simple use case of an experimental evaluation of the GPU accelerated algorithm (Jradi et al.,
2020), compared to its CPU variant. The experiment was carried out on a machine equipped
with a NVIDIA GeForce RTX 3060 Ti and Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz CPU,
running Arch Linux. The output of several runs of this example is shown in Figure 2. Figure 3
shows the detailed runs where the GPU started to be faster than CPU. The results show that
computational time is shorter with massively parallel GPU architecture. However, the data
transfer delay increases the total time and shows that using GPU for this use case is viable only
when the data is already generated on GPU or later used there or when the data size reaches
certain amount. This fact is in alignment with previously published findings (Dinkelbach et al.,

2012).
—8— GPU (Total) = —e— GPU (Computation) + —e— GPU (Memory)
—e— CPU
20
15
i)
e
10
5
0 000000000000000000000000000000
0 1 2 3 4 ) 6 7 8 9 10
input number count 108
Figure 2: Comparison of GPU and CPU array summation is shown in the chart.
I GPU (Computation) GPU (Memory) i CPU
-
g 30000
Q I —
3]
g
"§ 20000
=)
g
5
£ 10000
0 1 2 3 4 5 6 7
[ms] 1072

Figure 3: The turning point where GPU starts to be faster than CPU for array summation is shown with
two neighboring measurements.

Chlubna. (2026). vkCompViz: Universal C4++ Library for GPU-Based Experiments. Journal of Open Source Software, 11(117), 8871. https: 3
//doi.org/10.21105 /joss.08871.


https://doi.org/10.21105/joss.08871
https://doi.org/10.21105/joss.08871

The Journal of Open Source Software

References

Bailey, M. (2019). Introduction to the Vulkan® computer graphics APl. SIGGRAPH Asia 2019
Courses. https://doi.org/10.1145/3355047.3359405

Beckingsale, D. A., Burmark, J., Hornung, R., Jones, H., Killian, W., Kunen, A. J., Pearce,
O., Robinson, P., Ryujin, B. S., & Scogland, T. R. (2019). RAJA: Portable per-
formance for large-scale scientific applications. 2019 IEEE/ACM International Work-
shop on Performance, Portability and Productivity in HPC (P3HPC), 71-81. https:
//doi.org/10.1109/P3HPC49587.2019.00012

Dinkelbach, H., Vitay, J., Beuth, F., & Hamker, F. (2012). Comparison of GPU- and CPU-
implementations of mean-firing rate neural networks on parallel hardware. Network (Bristol,
England), 23. https://doi.org/10.3109/0954898X.2012.739292

Henriksen, T. (2024). A comparison of OpenCL, CUDA, and HIP as compilation targets
for a functional array language. Proceedings of the 1st ACM SIGPLAN International
Workshop on Functional Programming for Productivity and Performance, 1-9. https:
//doi.org/10.1145/3677997.3678226

Hu, L., Che, X., & Zheng, S.-Q. (2016). A closer look at GPGPU. 48(4). https://doi.org/10.
1145/2873053

Jia, S., Tian, Z., Ma, Y., Sun, C,, Zhang, Y., & Zhang, Y. (2021). A survey of GPGPU parallel
processing architecture performance optimization. 2021 IEEE/ACIS 20th International Fall
Conference on Computer and Information Science (ICIS Fall), 75-82. https://doi.org/10.
1109/1CISFall51598.2021.9627400

Jradi, W. A. R., Nascimento, H. A. D. do, & Martins, W. S. (2020). A GPU-based parallel
reduction implementation. In C. Bianchini, C. Osthoff, P. Souza, & R. Ferreira (Eds.),
High performance computing systems (pp. 168-182). Springer International Publishing.
https://doi.org/10.1007/978-3-030-41050-6_11

Lavri¢, P., Bohak, C., & Marolt, M. (2018). Vulkan abstraction layer for large data remote
rendering system. In L. T. De Paolis & P. Bourdot (Eds.), Augmented reality, virtual
reality, and computer graphics (pp. 480-488). Springer International Publishing. https:
//doi.org/10.1007 /978-3-319-95270-3_40

Mammeri, N., & Juurlink, B. (2018). VComputeBench: A Vulkan benchmark suite for
GPGPU on mobile and embedded GPUs. 2018 IEEE International Symposium on Workload
Characterization (IISWC), 25-35. https://doi.org/10.1109/1ISWC.2018.8573477

Mittal, S., & Vaishay, S. (2019). A survey of techniques for optimizing deep learning on GPUs.
Journal of Systems Architecture, 99, 101635. https://doi.org/10.1016/j.sysarc.2019.101635

Mufioz Lopez, J. E., & Winston, S. (2025). Hands-on Vulkan® ray tracing with dynamic
rendering. Proceedings of the Special Interest Group on Computer Graphics and Interactive
Techniques Conference Labs. https://doi.org/10.1145/3721251.3742861

Nguyen, H. (2007). GPU gems 3. Addison-Wesley Professional. ISBN: 9780321515261

Plebanski, P., Kelm, A., & Hajder, M. (2025). Efficiency and development effort of OpenCL
interoperability in Vulkan and OpenGL environments: A comparative case study. 111-119.
https://doi.org/10.5220/0013529000003964

Rossant, C., & Rougier, N. P. (2021). High-performance interactive scientific visualization
with Datoviz via the Vulkan low-level GPU API. Computing in Science & Engineering,
23(4), 85-90. https://doi.org/10.1109/MCSE.2021.3078345

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., Gayatri,
R., Harvey, E., Hollman, D. S., Ibanez, D., Liber, N., Madsen, J., Miles, J., Poliakoff, D.,

Chlubna. (2026). vkCompViz: Universal C++ Library for GPU-Based Experiments. Journal of Open Source Software, 11(117), 8871. https: 4

//doi.org/10.21105 /joss.08871.


https://doi.org/10.1145/3355047.3359405
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.3109/0954898X.2012.739292
https://doi.org/10.1145/3677997.3678226
https://doi.org/10.1145/3677997.3678226
https://doi.org/10.1145/2873053
https://doi.org/10.1145/2873053
https://doi.org/10.1109/ICISFall51598.2021.9627400
https://doi.org/10.1109/ICISFall51598.2021.9627400
https://doi.org/10.1007/978-3-030-41050-6_11
https://doi.org/10.1007/978-3-319-95270-3_40
https://doi.org/10.1007/978-3-319-95270-3_40
https://doi.org/10.1109/IISWC.2018.8573477
https://doi.org/10.1016/j.sysarc.2019.101635
https://doi.org/10.1145/3721251.3742861
https://doi.org/10.5220/0013529000003964
https://doi.org/10.1109/MCSE.2021.3078345
https://doi.org/10.21105/joss.08871
https://doi.org/10.21105/joss.08871

The Journal of Open Source Software

Powell, A., Rajamanickam, S., Simberg, M., Sunderland, D., Turcksin, B., & Wilke, J.
(2022). Kokkos 3: Programming model extensions for the exascale era. IEEE Transactions
on Parallel and Distributed Systems, 33(4), 805-817. https://doi.org/10.1109/TPDS.
2021.3097283

Unterguggenberger, J., Kerbl, B., & Wimmer, M. (2023). Vulkan all the way: Transitioning
to a modern low-level graphics APl in academia. Computers & Graphics, 111, 155-165.

https://doi.org/10.1016/j.cag.2023.02.001

Chlubna. (2026). vkCompViz: Universal C++ Library for GPU-Based Experiments. Journal of Open Source Software, 11(117), 8871. https: 5
//doi.org/10.21105/joss.08871.


https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1016/j.cag.2023.02.001
https://doi.org/10.21105/joss.08871
https://doi.org/10.21105/joss.08871

	Summary
	Statement of need
	Architecture
	Usage
	References

