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Summary
exa-AMD is a Python-based application designed to accelerate the discovery and design of
functional materials by integrating AI/ML tools, materials databases, and quantum mechanical
calculations into scalable, high-performance workflows. The execution model of exa-AMD
relies on Parsl (Babuji et al., 2019), a task-parallel programming library that enables a flexible
execution of tasks on any computing resource from laptops to supercomputers. exa-AMD
provides the following key-features:

• Modularity: The workflow is composed of interchangeable task modules. New data
sources, machine-learning models, or post-processing stages can be added or replaced
while leaving the rest of the workflow unchanged.

• Scalability: exa-AMD scales efficiently from a single workstation to many supercomputer
nodes. It demonstrated near-linear speedup on up to 1024 GPUs and 4,096 CPUs
through Parsl’s dynamic task distribution, as detailed in our benchmarking study (Xiaa
et al., 2025).

• Elasticity: computing resources can be added or released at run time, allowing the
workflow to exploit shared supercomputers efficiently and assign dynamically specialized
accelerators (e.g., GPUs) to different tasks.

• Resumability*: The workflow is divided into fine-grained tasks, allowing exa-AMD to
track completed steps so that subsequent runs can resume from where it left off. 1

• Configurability: exa-AMD exposes high-level configuration parameters to allow the users
to balance performance and accuracy for their scientific objectives. In particular, a JSON
configuration file expose parameters for: ML model selection, energy thresholds, DFT
convergence criteria, structural similarity cutoffs, and computing resource allocation.

exa-AMD is specifically designed for crystalline inorganic materials discovery, including metals,
intermetallics, ceramics, and semiconductors operating under periodic boundary conditions. In
contrast to frameworks such as AiiDA (Pizzi et al., 2016) and atomate2 (Ganose et al., 2025),
exa-AMD is an out of the box AI driven discovery workflow for scalable identification of new
materials. Its modular design allows users to extend or replace components (e.g., machine
learning models, data sources, or post-processing utilities), but its core goal is to deliver a
pre-configured and scalable research pipeline optimized for materials discovery of multinary
systems rather than serving as an materials modeling automation framework.

1Scope of resumability. exa-AMD does not implement classical checkpoint/restart. Instead, resumability arises
from the workflow’s modular design: at runtime, exa-AMD detects the last completed phase and starts with the
next one. For DFT stages, partially processed structure sets also resume automatically. For example, if a user
processes the first 100 structures in one run, the next run begins at structure 101.
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Figure 1: Example output from an exa-AMD workflow for the Ce-Fe-In chemical system. (Left) The
predicted ternary convex hull, where each point represents a calculated crystal structure. The color
indicates the energy above the hull (𝐸hull), with points on or very near the hull (in red, 𝐸hull ≈ 0)
predicted to be thermodynamically stable or metastable. (Right) The crystal structure of Ce3FeIn, a new
ternary compound identified by the workflow as a promising stable phase, located on the convex hull.
This figure demonstrates the capability of exa-AMD to perform high-throughput screening and identify
novel, potentially synthesizable materials.

Statement of Need
High-performance functional materials are critical for advanced technology innovation and
sustainable development. However, the pace of discovery and design of novel functional
materials is far behind technological demands. For example, only ~200,000 inorganic crystalline
compounds are experimentally known despite theoretical estimates suggesting millions of
thermodynamically stable compositions remain undiscovered (Merchant et al., 2023). The
development of next-generation batteries, permanent magnets, and catalysts requires exploring
complex multinary (3+ element) systems where combinatorial explosion makes exhaustive
experimental synthesis impractical.

Traditional materials discovery workflows require researchers to manually: (1) identify candidate
structures from databases or literature, (2) prepare input files for DFT calculations, (3) submit
jobs to computing clusters with custom job scripts, (4) monitor calculations and handle failures,
(5) extract results from output files, (6) perform post-processing analysis in separate scripts,
and (7) manually construct phase diagrams. This fragmented process is time-consuming, error-
prone, and difficult to scale beyond a few dozen candidate structures. exa-AMD automates this
entire pipeline, enabling exploration of thousands of candidates with minimal user intervention.

exa-AMD addresses this need by providing a modular and configurable platform that connects
multiple computational techniques specific to materials discovery in a unified workflow. It
supports heterogeneous execution across multiple nodes types and enables high-throughput
processing of structure candidates. By using Parsl, exa-AMD is able to decouple the workflow
logic from execution configuration, thereby empowering researchers to scale their workflows
without having to reimplement them for each system.

Workflow Overview
exa-AMD implements a five-stage workflow as illustrated in Figure 2. Each stage may
initiate multiple asynchronous tasks that Parsl distributes across available computing resources
(nodes, cores, or accelerators). Within each task, computations may leverage shared-memory
parallelism (e.g., VASP’s MPI+OpenMP on CPUs, shown in blue) or GPU acceleration (e.g.,
CGCNN inference, shown in green). This two-level parallelism enables efficient utilization of
heterogeneous HPC systems.
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The workflow starts with the generation of hypothetical crystal structures based on the initial
templates provided by the user. In this step, target elements are substituted into existing
crystal structures, creating chemically plausible candidates for further analysis. While current
implementation uses template-based substitution, the structure generation stage is modular and
can be replaced with: Random structure generation (e.g., via USPEX-style methods), Genetic
algorithms (e.g., AGA, CALYPSO, etc), Prototype enumeration (e.g., AFLOW prototype
library), User-provided candidate sets. In the next stage, the formation energies of the
generated candidates are predicted using a Crystal Graph Convolutional Neural Network
(CGCNN) model (Xie & Grossman, 2018). Structures with low predicted formation energies
are selected as promising candidates for further study. This step enables high-throughput
screening and prioritization, reducing the computational cost of subsequent first-principles
calculations. Similarly to previous step, the CGCNN module is designed as a pluggable
component. Alternative models can be integrated by implementing the same interface, such
as ALIGNN, M3GNet, MEGNet, CHGNet, etc. Following CGCNN screening, a filtering stage
removes duplicate or near-duplicate structures, based on a structural similarity threshold. Then,
the filtered set of structures is subjected to first-principles calculations using Density Functional
Theory (DFT), as implemented in the VASP package (Kresse & Furthmüller, 1996a, 1996b).

After the completion of VASP calculations, exa-AMD performs automated post-processing
to extract and analyze key physical properties from the calculation outputs. This final stage
computes the formation energies of each structure relative to reference elemental phases,
which are then used for constructing the convex hull—the set of thermodynamically stable
phases at zero temperature and pressure, where any compound above this hull is metastable
or unstable (Ong et al., 2008). Structures with energy above the convex hull below a user-
configurable threshold (typically 0.1 eV/atom) are identified as promising candidates and are
automatically copied to a dedicated folder for further analysis. (Note that this criterion, based
on thermodynamic stability relative to the convex hull, differs from the one used in the structure
selection stage, where candidates are filtered based on their absolute formation energies, e.g.,
below a threshold of −0.2 eV/atom.) At the end of this stage, exa-AMD generates an updated
phase diagram by plotting the convex hull. An example for the Ce-Fe-In system is shown
in Figure 1, where exa-AMD identified several new potential compounds on the convex hull,
including Ce3FeIn.
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Figure 2: The core five-stage workflow implemented in exa-AMD. This represents a pre-configured
pipeline for AI-assisted materials discovery. While this is the default workflow, the modular design of exa-
AMD allows users to customize, replace, or extend individual stages to suit different research objectives.
Inputs include target chemical elements and initial structure templates. Intermediate data includes
ML-predicted formation energies and structural similarity metrics. Outputs comprise DFT-optimized
structures, formation energies, energy above convex hull values, and updated phase diagrams.

Initial Crystal Structures
exa-AMD requires an initial set of crystal structures used as starting points in the workflow.
For investigations involving any multinary system, the input dataset can be populated with
any relevant set of initial structures, such as quaternary prototypes, user-defined entries, or
structures taken from one or multiple database sources including but not limited to Materials
Project (Horton et al., 2025), GNoME (Merchant et al., 2023), AFLOW (Curtarolo et al.,
2012), OQMD (Kirklin et al., 2015; Saal et al., 2013), etc. This flexibility makes the workflow
adaptable to a wide range of compositional and structural spaces.
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