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Summary

MDPax is a Python library for solving large-scale Markov decision processes (MDPs), leveraging
JAX's (Bradbury et al., 2022) support for vectorization, parallelization, and just-in-time (JIT)
compilation on graphics processing units (GPUs). It includes GPU-accelerated implementations
of standard algorithms including value iteration and policy iteration (Sutton & Barto, 2018).

MDPs describe sequential decision-making problems in which, at each timestep, an agent
observes the current state of its environment, selects an action, transitions to a new state by
taking the selected action, and receives a reward. The goal is to find a policy (a mapping
from observed states to actions) that maximizes the expected long-term reward, accounting
for both the immediate and future consequences of actions. MDPs have been used to model a
wide range of problems, including medical treatment planning (Schaefer et al., 2004), traffic
light control (Haijema et al., 2017), financial portfolio management (Bauerle & Rieder, 2011),
and conservation policy (Nicol et al., 2010).

Exact solution methods based on dynamic programming scale poorly due to the curse of
dimensionality (Bellman, 1957): the number of states can grow exponentially with problem
parameters, quickly making computation very challenging. Deep reinforcement learning has
proven to be very effective at finding approximate solutions for large problems (Arulkumaran
et al., 2017), but exact solutions remain valuable both in their own right and for benchmarking
approximate methods.

The exact algorithms are well suited to parallel execution, and modern GPUs have thousands
of processing cores over which updates can be effectively distributed. By building on JAX,
MDPax makes it easy to take advantage of this hardware through a high-level Python API,
enabling researchers and practitioners to solve problems with millions of states without needing
expertise in GPU programming.

Statement of need

MDPax was originally developed to support our work on perishable inventory management.
Solving these problems exactly requires accounting not just for total inventory levels, but also
for the age profile of the stock. As a result, the state space grows exponentially with the
product’s maximum useful life, making realistic problem instances extremely large. Although
many MDP solvers exist, exact methods are widely considered impractical or infeasible for
realistically sized perishable inventory problems (Abouee-Mehrizi et al., 2025; De Moor et al.,
2022; Hendrix et al., 2019; Nahmias, 1982).
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Implementations of exact solution methods face two main challenges when applied to large
MDPs:

= Memory requirements: The full transition matrix describing the dynamics of the problem
grows quadratically with the number of states and linearly with the number of actions,
making it infeasible to store and process for large problems.

= Computational complexity: The core operations involve nested loops over states, actions,
and successor states, which become prohibitively expensive as the state space grows.

Most existing MDP libraries run exclusively on CPUs. MDPtoolbox (Chadés et al., 2014)
provides exact solution algorithms across Python (Cordwell, 2015), MATLAB (Cros, 2015), and
R (Chadeés et al., 2017), but offers no support for parallelism or GPU acceleration. Two more
recent Python libraries, MDPSolver (Andersen & Andersen, 2025) and madupite (Gargiani
et al., 2025), aim to improve performance on large problems by implementing their solvers
in C++ with CPU-based parallelism. In addition, madupite provides a broader set of inexact
policy iteration methods to support solving larger problems. For Julia, POMDPs.jl (Egorov
et al., 2017) provides a flexible interface for specifying MDPs and supports a wide range of
CPU-based solvers.

The benefits of GPU-acceleration for exact methods have been demonstrated in the literature
(J6hannsson, 2009; Ortega et al., 2019; Sargent & Stachurski, 2025), but remain uncommon
in practice. We suggest this is due to the perceived complexity of GPU programming and
the limited availability of researcher-friendly software that provides GPU-accelerated solvers.
The VFI Toolkit for MATLAB (Kirkby, 2017) supports GPU-acceleration but requires users to
provide the full transition matrix, which becomes infeasible for large problems due to memory
constraints.

MDPax addresses the memory challenge by requiring users to provide a deterministic transition
function instead of the full transition matrix (similar to the approach used in POMDPs.jl).
This function maps a state, action, and random event to the resulting next state and reward,
and is used to dynamically compute the next state and reward on demand. MDPax uses JAX
to exploit the massive parallel processing capabilities of modern GPUs, significantly reducing
the runtime required for solving large MDPs by calculating value updates for batches of states
in parallel.

MDPax has been developed to solve large MDPs with millions of states. For small to medium-
sized MDPs, MDPax may be slower than existing CPU-based packages due to the overheads
introduced by the use of JAX and GPUs, including JIT compilation and data transfer between
the host and GPU(s). For large problems, these overheads are outweighed by substantial
performance gains.

An early version of MDPax was used in our work to solve large instances of three perishable
inventory problems that had previously been described as infeasible or impractical to solve
exactly (Farrington et al., 2025). In one case, the original study reported that value iteration
using a CPU-based MATLAB implementation failed to converge within a week on an MDP with
over 16 million states (Hendrix et al., 2019). Using MDPax, the same algorithm consistently
converged in under 3.5 hours on a consumer-grade GPU (based on 10 runs using an Nvidia
GeForce RTX 3060 GPU, Python 3.12.4 and JAX 0.5.0). The runtime can be further reduced
without any code changes using multiple data-centre-grade GPUs (Farrington et al., 2025).

Features and design

MDPax is structured around two core classes: the Problem and the Solver.

The Problem class represents an MDP and is intended to be subclassed by users. To define a
custom problem, users implement methods that specify the sets of states and actions, random
events and their probabilities, and a deterministic transition function that maps a (state, action,
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random event) triple to the next state and corresponding reward. MDPax includes four example
Problems: a forest management problem adapted from pymdptoolbox (Cordwell, 2015) and
three perishable inventory problems from the literature (Abouee-Mehrizi et al., 2025; De Moor
et al., 2022; Hendrix et al., 2019).

The Solver class defines a common framework for implementing dynamic programming methods
to solve MDPs. MDPax currently includes implementations of three standard algorithms: value
iteration, relative value iteration (to optimize the average reward), and policy iteration. It also
provides a variant of value iteration for MDPs with periodic dynamics (e.g., when demand
depends on the day of the week), and a semi-asynchronous version in which updated values
for each batch of states are made available for subsequent batch updates within the same
iteration on the same device.

For large problems, solving an MDP can still be time-consuming. MDPax therefore includes
checkpointing functionality using Orbax (Gaffney et al., 2025), enabling users to save and
restore the state of the Solver and resume optimization after an interruption.
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