The Journal of Open Source Software

DOI: 10.21105/joss.08897

Software
= Review 7
= Repository &
= Archive 7

Editor: Patrick Diehl 2
Reviewers:

= @arrrunn

= @thchang

Submitted: 01 August 2025
Published: 31 October 2025

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

MDPax: GPU-accelerated MDP solvers in Python
with JAX

Joseph Farrington © 'Y, Wai Keong Wong ® 123, Kezhi Li©?, and Martin

Utley @4

1 Institute of Health Informatics, University College London, United Kingdom 2 NIHR University College
London Hospitals Biomedical Research Centre, United Kingdom 3 Cambridge University Hospitals NHS
Foundation Trust, United Kingdom 4 Clinical Operational Research Unit, University College London,
United Kingdom § Corresponding author

Summary

MDPax is a Python library for solving large-scale Markov decision processes (MDPs), leveraging
JAX's (Bradbury et al., 2022) support for vectorization, parallelization, and just-in-time (JIT)
compilation on graphics processing units (GPUs). It includes GPU-accelerated implementations
of standard algorithms including value iteration and policy iteration (Sutton & Barto, 2018).

MDPs describe sequential decision-making problems in which, at each timestep, an agent
observes the current state of its environment, selects an action, transitions to a new state by
taking the selected action, and receives a reward. The goal is to find a policy (a mapping
from observed states to actions) that maximizes the expected long-term reward, accounting
for both the immediate and future consequences of actions. MDPs have been used to model a
wide range of problems, including medical treatment planning (Schaefer et al., 2004), traffic
light control (Haijema et al., 2017), financial portfolio management (Bauerle & Rieder, 2011),
and conservation policy (Nicol et al., 2010).

Exact solution methods based on dynamic programming scale poorly due to the curse of
dimensionality (Bellman, 1957): the number of states can grow exponentially with problem
parameters, quickly making computation very challenging. Deep reinforcement learning has
proven to be very effective at finding approximate solutions for large problems (Arulkumaran
et al., 2017), but exact solutions remain valuable both in their own right and for benchmarking
approximate methods.

The exact algorithms are well suited to parallel execution, and modern GPUs have thousands
of processing cores over which updates can be effectively distributed. By building on JAX,
MDPax makes it easy to take advantage of this hardware through a high-level Python API,
enabling researchers and practitioners to solve problems with millions of states without needing
expertise in GPU programming.

Statement of need

MDPax was originally developed to support our work on perishable inventory management.
Solving these problems exactly requires accounting not just for total inventory levels, but also
for the age profile of the stock. As a result, the state space grows exponentially with the
product’s maximum useful life, making realistic problem instances extremely large. Although
many MDP solvers exist, exact methods are widely considered impractical or infeasible for
realistically sized perishable inventory problems (Abouee-Mehrizi et al., 2025; De Moor et al.,
2022; Hendrix et al., 2019; Nahmias, 1982).

Farrington et al. (2025). MDPax: GPU-accelerated MDP solvers in Python with JAX. Journal of Open Source Software, 10(114), 8897. 1
https://doi.org/10.21105/joss.08897.


https://orcid.org/0000-0003-4156-3419
https://orcid.org/0000-0002-5742-0108
https://orcid.org/0000-0003-3073-3128
https://orcid.org/0000-0001-9928-1516
https://doi.org/10.21105/joss.08897
https://github.com/openjournals/joss-reviews/issues/8897
https://github.com/joefarrington/mdpax
https://doi.org/10.5281/zenodo.17488356
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/arrrunn
https://github.com/thchang
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08897

The Journal of Open Source Software

Implementations of exact solution methods face two main challenges when applied to large
MDPs:

= Memory requirements: The full transition matrix describing the dynamics of the problem
grows quadratically with the number of states and linearly with the number of actions,
making it infeasible to store and process for large problems.

= Computational complexity: The core operations involve nested loops over states, actions,
and successor states, which become prohibitively expensive as the state space grows.

Most existing MDP libraries run exclusively on CPUs. MDPtoolbox (Chadés et al., 2014)
provides exact solution algorithms across Python (Cordwell, 2015), MATLAB (Cros, 2015), and
R (Chadeés et al., 2017), but offers no support for parallelism or GPU acceleration. Two more
recent Python libraries, MDPSolver (Andersen & Andersen, 2025) and madupite (Gargiani
et al., 2025), aim to improve performance on large problems by implementing their solvers
in C++ with CPU-based parallelism. In addition, madupite provides a broader set of inexact
policy iteration methods to support solving larger problems. For Julia, POMDPs.jl (Egorov
et al., 2017) provides a flexible interface for specifying MDPs and supports a wide range of
CPU-based solvers.

The benefits of GPU-acceleration for exact methods have been demonstrated in the literature
(J6hannsson, 2009; Ortega et al., 2019; Sargent & Stachurski, 2025), but remain uncommon
in practice. We suggest this is due to the perceived complexity of GPU programming and
the limited availability of researcher-friendly software that provides GPU-accelerated solvers.
The VFI Toolkit for MATLAB (Kirkby, 2017) supports GPU-acceleration but requires users to
provide the full transition matrix, which becomes infeasible for large problems due to memory
constraints.

MDPax addresses the memory challenge by requiring users to provide a deterministic transition
function instead of the full transition matrix (similar to the approach used in POMDPs.jl).
This function maps a state, action, and random event to the resulting next state and reward,
and is used to dynamically compute the next state and reward on demand. MDPax uses JAX
to exploit the massive parallel processing capabilities of modern GPUs, significantly reducing
the runtime required for solving large MDPs by calculating value updates for batches of states
in parallel.

MDPax has been developed to solve large MDPs with millions of states. For small to medium-
sized MDPs, MDPax may be slower than existing CPU-based packages due to the overheads
introduced by the use of JAX and GPUs, including JIT compilation and data transfer between
the host and GPU(s). For large problems, these overheads are outweighed by substantial
performance gains.

An early version of MDPax was used in our work to solve large instances of three perishable
inventory problems that had previously been described as infeasible or impractical to solve
exactly (Farrington et al., 2025). In one case, the original study reported that value iteration
using a CPU-based MATLAB implementation failed to converge within a week on an MDP with
over 16 million states (Hendrix et al., 2019). Using MDPax, the same algorithm consistently
converged in under 3.5 hours on a consumer-grade GPU (based on 10 runs using an Nvidia
GeForce RTX 3060 GPU, Python 3.12.4 and JAX 0.5.0). The runtime can be further reduced
without any code changes using multiple data-centre-grade GPUs (Farrington et al., 2025).

Features and design

MDPax is structured around two core classes: the Problem and the Solver.

The Problem class represents an MDP and is intended to be subclassed by users. To define a
custom problem, users implement methods that specify the sets of states and actions, random
events and their probabilities, and a deterministic transition function that maps a (state, action,

Farrington et al. (2025). MDPax: GPU-accelerated MDP solvers in Python with JAX. Journal of Open Source Software, 10(114), 8897. 2
https://doi.org/10.21105/joss.08897.


https://doi.org/10.21105/joss.08897

The Journal of Open Source Software

random event) triple to the next state and corresponding reward. MDPax includes four example
Problems: a forest management problem adapted from pymdptoolbox (Cordwell, 2015) and
three perishable inventory problems from the literature (Abouee-Mehrizi et al., 2025; De Moor
et al., 2022; Hendrix et al., 2019).

The Solver class defines a common framework for implementing dynamic programming methods
to solve MDPs. MDPax currently includes implementations of three standard algorithms: value
iteration, relative value iteration (to optimize the average reward), and policy iteration. It also
provides a variant of value iteration for MDPs with periodic dynamics (e.g., when demand
depends on the day of the week), and a semi-asynchronous version in which updated values
for each batch of states are made available for subsequent batch updates within the same
iteration on the same device.

For large problems, solving an MDP can still be time-consuming. MDPax therefore includes
checkpointing functionality using Orbax (Gaffney et al., 2025), enabling users to save and
restore the state of the Solver and resume optimization after an interruption.

Acknowledgements

JF was funded by UKRI training grant EP/S021612/1, the CDT in Al-enabled Healthcare
Systems, and the Clinical and Research Informatics Unit at the NIHR University College London
Hospitals Biomedical Research Centre.

References

Abouee-Mehrizi, H., Mirjalili, M., & Sarhangian, V. (2025). Platelet inventory management
with approximate dynamic programming. INFORMS Journal on Computing. https://doi.
org/10.1287/ijoc.2023.0245

Andersen, A. R., & Andersen, J. F. (2025). MDPSolver: An efficient solver for Markov decision
processes. Journal of Open Source Software, 10(109), 7544. https://doi.org/10.21105/
joss.07544

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep re-
inforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26-38.
https://doi.org/10.1109/MSP.2017.2743240

Bauerle, N., & Rieder, U. (2011). Markov decision processes with applications to finance.
Springer. ISBN: 978-3-642-18324-9

Bellman, R. (1957). Dynamic programming. Princeton University Press.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2022). JAX: Composable
transformations of Python-+NumPy programs. In GitHub repository. http://github.com/
google/jax

Chadeés, I., Chapron, G., Cros, M., Garcia, F., & Sabbadin, R. (2014). MDPtoolbox: A

multi-platform toolbox to solve stochastic dynamic programming problems. Ecography,
37(9), 916-920. https://doi.org/10.1111 /ecog.00888

Chades, 1., Chapron, G., Cros, M., Garcia, F., & Sabbadin, R. (2017). MDPtoolbox: Markov
decision processes toolbox. In The Comprehensive R Archive Network (CRAN). https:
//doi.org/10.32614 /cran.package.mdptoolbox

Cordwell, S. (2015). Pymdptoolbox. In GitHub repository. https://github.com/sawcordwell /
pymdptoolbox

Cros, M.-J. (2015). Markov decision processes (MDP) toolbox. In MATLAB

Farrington et al. (2025). MDPax: GPU-accelerated MDP solvers in Python with JAX. Journal of Open Source Software, 10(114), 8897. 3
https://doi.org/10.21105/joss.08897.


https://doi.org/10.1287/ijoc.2023.0245
https://doi.org/10.1287/ijoc.2023.0245
https://doi.org/10.21105/joss.07544
https://doi.org/10.21105/joss.07544
https://doi.org/10.1109/MSP.2017.2743240
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1111/ecog.00888
https://doi.org/10.32614/cran.package.mdptoolbox
https://doi.org/10.32614/cran.package.mdptoolbox
https://github.com/sawcordwell/pymdptoolbox
https://github.com/sawcordwell/pymdptoolbox
https://doi.org/10.21105/joss.08897

SS

The Journal of Open Source Software

Central File Exchange. https://uk.mathworks.com/matlabcentral /fileexchange/
25786-markov-decision-processes-mdp-toolbox

De Moor, B. J., Gijsbrechts, J., & Boute, R. N. (2022). Reward shaping to improve the
performance of deep reinforcement learning in perishable inventory management. European
Journal of Operational Research, 301(2), 535-545. https://doi.org/10.1016/j.ejor.2021.10.
045

Egorov, M., Sunberg, Z. N., Balaban, E., Wheeler, T. A., Gupta, J. K., & Kochenderfer, M. J.
(2017). POMDPs.jl: A framework for sequential decision making under uncertainty. Journal
of Machine Learning Research, 18(26), 1-5. http://jmlr.org/papers/v18/16-300.html

Farrington, J., Wong, W. K., Li, K., & Utley, M. (2025). Going faster to see further: Graphics
processing unit-accelerated value iteration and simulation for perishable inventory control
using JAX. Annals of Operations Research. https://doi.org/10.1007 /s10479-025-06551-6

Gaffney, C., Li, D., Zhang, J., Sang, R., Jain, A., & Hu, H. (2025). Orbax. In GitHub
repository. https://github.com/google/orbax

Gargiani, M., Pawlowsky, P., Sieber, R., Hapla, V., & Lygeros, J. (2025). Madupite: A
high-performance distributed solver for large-scale Markov decision processes. Journal of
Open Source Software, 10(108), 7411. https://doi.org/10.21105/joss.07411

Haijema, R., Hendrix, E. M. T., & Wal, J. van der. (2017). Dynamic control of traffic lights.
In R. J. Boucherie & N. M. van Dijk (Eds.), Markov Decision Processes in Practice (pp.
371-386). Springer. https://doi.org/10.1007 /978-3-319-47766-4_13

Hendrix, E. M., Ortega, G., Haijema, R., Buisman, M. E., & Garcia, I. (2019). On computing
optimal policies in perishable inventory control using value iteration. Computational and
Mathematical Methods, 1(4), e1027. https://doi.org/10.1002/cmm4.1027

Jéhannsson, A. P. (2009). GPU-based Markov decision process solver [M.Sc. dissertation,
Reykjavik University]. https://en.ru.is/media/skjol-td /MSThesis_Arsaell ThorJohannsson.
pdf

Kirkby, R. (2017). A toolkit for value function iteration. Computational Economics, 49(1).
https://doi.org/10.1007 /s10614-015-9544-1

Nahmias, S. (1982). Perishable inventory theory: A review. Operations Research, 30(4),
680-708. https://doi.org/10.1287 /opre.30.4.680

Nicol, S. C., Chades, |., Linke, S., & Possingham, H. P. (2010). Conservation decision-making
in large state spaces. Ecological Modelling, 221(21), 2531-2536. https://doi.org/10.1016/
j.ecolmodel.2010.02.009

Ortega, G., Hendrix, E. M., & Garcia, |. (2019). A CUDA approach to compute perishable
inventory control policies using value iteration. The Journal of Supercomputing, 75(3),
1580-1593. https://doi.org/10.1007 /s11227-018-2692-z

Sargent, T. J., & Stachurski, J. (2025). Quantitative economics with JAX. In QuantEcon.
https://jax.quantecon.org/

Schaefer, A. J., Bailey, M. D., Shechter, S. M., & Roberts, M. S. (2004). Modeling medical
treatment using Markov decision processes. In M. L. Brandeau, F. Sainfort, & W. P.
Pierskalla (Eds.), Operations Research and Health Care: A Handbook of Methods and
Applications (pp. 593-612). Springer. https://doi.org/10.1007/1-4020-8066-2_23

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). The
MIT Press. ISBN: 978-0-262-03924-6

Farrington et al. (2025). MDPax: GPU-accelerated MDP solvers in Python with JAX. Journal of Open Source Software, 10(114), 8897. 4
https://doi.org/10.21105/joss.08897.


https://uk.mathworks.com/matlabcentral/fileexchange/25786-markov-decision-processes-mdp-toolbox
https://uk.mathworks.com/matlabcentral/fileexchange/25786-markov-decision-processes-mdp-toolbox
https://doi.org/10.1016/j.ejor.2021.10.045
https://doi.org/10.1016/j.ejor.2021.10.045
http://jmlr.org/papers/v18/16-300.html
https://doi.org/10.1007/s10479-025-06551-6
https://github.com/google/orbax
https://doi.org/10.21105/joss.07411
https://doi.org/10.1007/978-3-319-47766-4_13
https://doi.org/10.1002/cmm4.1027
https://en.ru.is/media/skjol-td/MSThesis_ArsaellThorJohannsson.pdf
https://en.ru.is/media/skjol-td/MSThesis_ArsaellThorJohannsson.pdf
https://doi.org/10.1007/s10614-015-9544-1
https://doi.org/10.1287/opre.30.4.680
https://doi.org/10.1016/j.ecolmodel.2010.02.009
https://doi.org/10.1016/j.ecolmodel.2010.02.009
https://doi.org/10.1007/s11227-018-2692-z
https://jax.quantecon.org/
https://doi.org/10.1007/1-4020-8066-2_23
https://doi.org/10.21105/joss.08897

	Summary
	Statement of need
	Features and design
	Acknowledgements
	References

