The Journal of Open Source Software

DOI: 10.21105/joss.08901

Software
= Review @0
= Repository &0
= Archive &0

Editor: Vincent Knight @
Reviewers:

= @jcorbino

= @anthbapt

Submitted: 20 June 2025
Published: 14 January 2026

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

PyMetric: A Geometry Informed Array Mathematics
Package

Eliza C. Diggins ©®'Y and Daniel R. Wik ©!

1 University of Utah Department of Physics and Astronomy, Salt Lake City, Utah, USA q Corresponding
author

Summary

PyMetric is a lightweight Python library designed to streamline differential geometry and
vector calculus operations in user-defined coordinate systems, with a focus on applications
in astrophysics and computational physics. The library was originally created to provide a
geometric backend for the Pisces project, an in-development, general purpose astrophysical
modeling and initial conditions library, but has since grown into an independent library due to
its size and complexity. In many physical modeling tasks, it is both natural and advantageous to
work in non-Cartesian coordinate systems that align with the inherent symmetries of the system.
These coordinate systems can feature complex geometric structure which, makes the explicit
handling of differential operations cumbersome. This is particularly true for exotic coordinate
systems (e.g., homoeoidal coordinate systems). PyMetric provides a unified abstraction that
decouples the underlying coordinate representation from the operations themselves, allowing
users to accurately compute gradients, divergences, Laplacians, and related geometric quantities
through a consistent (and coordinate system agnostic) interface. This makes it easier to
prototype and scale models in complex geometries without having to rewrite operations for
each coordinate system.

The core design of PyMetric relies on a hybrid symbolic-numeric model that balances efficiency,
flexibility, and accuracy. Symbolic computation is used to derive key geometric quantities,
such as metric tensors, Christoffel symbols, and Jacobians, from a minimal set of coordinate
system properties. Once generated, these symbolic structures can be converted into efficient
numerical routines that operate on array-backed data and are composed to perform higher-level
operations. This approach allows PyMetric to support coordinate-aware computation with
minimal overhead, avoiding the need for repeated symbolic manipulation during runtime, while
maintaining high accuracy through analytically correct geometric expressions. The result is a
powerful and extensible framework that enables NumPy-style (Harris et al., 2020) workflows in
complex coordinate systems without sacrificing physical fidelity.

In addition to its symbolic-numeric foundation, PyMetric provides structured abstractions for
grids and field data, supporting a range of coordinate systems and buffer backends. Because
the PyMetric field abstraction is only minimally coupled to the underlying data storage, it
can interface with a variety of array backends, including in-memory arrays and HDF5 (The
HDF Group, n.d.) storage for lazy-loading and chunked computation. This design enables
coordinate-aware operations to be applied efficiently to large, multidimensional datasets without
compromising generality or performance.

By automating core geometric operations across coordinate systems, PyMetric simplifies the
development of physics-based modeling software that requires flexible geometric handling.
Its design supports a broad spectrum of scientific computing applications, from simulating
relativistic fluids to analyzing gravitational fields. In doing so, PyMetric establishes a modern
and extensible foundation for geometry-aware computation in Python, enabling the creation of

Diggins, & Wik. (2026). PyMetric: A Geometry Informed Array Mathematics Package. Journal of Open Source Software, 11(117), 8901. 1
https://doi.org/10.21105/joss.08901.

https://orcid.org/0009-0005-9389-9098
https://orcid.org/0000-0001-9110-2245
https://doi.org/10.21105/joss.08901
https://github.com/openjournals/joss-reviews/issues/8901
https://github.com/Pisces-Project/PyMetric
https://doi.org/10.5281/zenodo.17953706
https://vknight.org
https://orcid.org/0000-0002-4245-0638
https://github.com/jcorbino
https://github.com/anthbapt
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08901

The Journal of Open Source Software

accurate, efficient, and scalable models in complex coordinate geometries.

Statement of need

Modern astrophysical modeling requires a high degree of flexibility—both in physical assump-
tions and in computational infrastructure. The Pisces Project (of which PyMetric is a part) is
a general-purpose model-building framework for astrophysics that aims to unify and extend
existing tools for generating models and initial conditions (e.g., DICE (Perret, 2016), GALIC
(Yurin & Springel, 2014)) under a common, modular API. Its goal is to make it easier to
construct complex, physically motivated models of systems such as galaxies, black holes, or
relativistic fluids by exposing a simple and extensible interface for defining models, fields, and
dynamics.

A persistent challenge in building such extensible modeling tools is the limited and inconsis-
tent support for coordinate systems found in most existing software. Codes like EinsteinPy
(EinsteinPy Development Team, 2024), DICE, and yt (Turk et al., 2010) often hard-code
assumptions about coordinate geometry, making them difficult to generalize to new physical
contexts or non-Cartesian coordinate systems. This lack of abstraction limits reusability and
complicates the construction of unified modeling workflows across domains such as general
relativity, galactic dynamics, and fluid mechanics.

To address this limitation, PyMetric was developed to be a lightweight library that standardizes
coordinate-aware geometric computation. The library is designed to serve as the geometric
backend for Pisces and similar modeling systems. It provides a consistent abstraction layer
for defining coordinate systems, computing differential geometric quantities, and evaluating
operators like gradients, divergences, and Laplacians, all without requiring the user to manage
low-level details of tensor algebra or coordinate transformations.

PyMetric emphasizes extensibility and modularity through four core interfaces:

= Coordinate System API — Enables the definition and use of arbitrary coordinate sys-
tems with minimal required knowledge, while supporting symbolic derivation of metric-
dependent quantities

= Buffer APl — Provides a backend-agnostic interface for array storage, allowing seamless
integration with systems like HDF5, XArray, Dask, and unit-aware arrays

= Differential Geometry APl — Implements low-level, coordinate-independent formulations
of core operations such as gradients, divergences, Laplacians, and volume elements

= Grid and Field APl — Supports flexible discretization strategies and a variety of field
types, including sparse and dense scalar, vector, and tensor fields

Together, these abstractions form a unified symbolic-numeric pipeline that allows high-level
modeling code to operate naturally across diverse geometries and data representations. By
standardizing geometric computation and decoupling it from specific coordinate assumptions
or backend implementations, PyMetric addresses a longstanding gap in scientific Python
infrastructure. This foundation enables Pisces to offer a powerful, composable, and user-
friendly environment for building physically accurate models in astrophysics and beyond.

Methodology

The core methodology behind PyMetric centers on a mathematically rigorous yet computation-
ally practical framework for performing differential geometry operations in arbitrary coordinate
systems. The library is designed to support seamless transitions between symbolic derivation
and numerical evaluation, allowing for precise, efficient, and geometry-aware modeling.

A coordinate system in PyMetric is defined minimally by:

= A set of axes labels (z!,22,...)

Diggins, & Wik. (2026). PyMetric: A Geometry Informed Array Mathematics Package. Journal of Open Source Software, 11(117), 8901. 2
https://doi.org/10.21105/joss.08901.

https://doi.org/10.21105/joss.08901

J&SS

The Journal of Open Source Software

» Forward and inverse transformations between these coordinates and Cartesian Space
T(z,y,z) and T71(z!, 22, 23)
= A symbolically defined metric tensor g,,,,

From this core specification, PyMetric constructs key geometric quantities, such as the inverse
metric gt”, the metric density /g, and terms appearing in differential operations, such as
LY = g71/20,(g"/?g"), which appears in the scalar Laplacian V2¢ = L,¢ + g"9?,6.
These are represented both as symbolic expressions-using SymPy (Meurer et al., 2017)-and as
NumPy-backed callables. These quantities are computed lazily: they are only derived when
required for a specific operation, avoiding unnecessary overhead.

Coordinate systems are categorized into types (e.g., orthogonal or curvilinear) that determine
how symbolic properties are derived and which simplifications may apply. This abstraction
enables users to model highly symmetric systems (e.g., spherical or ellipsoidal coordinates) as
easily as more general curvilinear systems.

Field and Grid Operations

Fields in PyMetric are array-backed data structures (typically NumPy or HDF5 buffers) that
are explicitly associated with a coordinate system and grid. The grid handling supports flexible
discretization strategies, including cell-centered and node-centered layouts, as well as ghost
zones for finite-difference operations. Support is currently provided for single-grid configurations
with arbitrary spacing; however, multigrid extension is planned for future releases. While fields
behave like standard NumPy arrays, they also carry metadata about their geometric context,
including coordinate labels, spacing, and metric-aware tensor properties.

Operations on fields, such as computing covariant derivatives, applying Laplacians, or trans-
forming between bases, are automatically dispatched to appropriate symbolic expressions and
numerical kernels based on the field's variance and the geometry of the underlying coordinate
system.

This design allows users to write high-level, reusable code that is agnostic to the specific
geometry, while still benefiting from the mathematical correctness and efficiency of coordinate-
aware computation.

Future Development

The development roadmap for PyMetric is focused on deepening its mathematical capabilities
and expanding its utility in advanced physical modeling contexts, particularly those involving
curved and relativistic spacetimes. While the current implementation supports a robust suite
of differential operators in orthogonal and curvilinear coordinate systems, several avenues for
future growth are planned:

1. Expanded Differential Operator Support:

PyMetric will be extended to support a broader range of tensor calculus operations,
including:

= Covariant derivatives of higher-rank tensors, enabling modeling of tensor transport
and geodesic deviation

= Tensor contractions and curvature operations, including the Riemann, Ricci, and
Einstein tensors, to support simulations in general relativity and cosmology

These features will allow PyMetric to serve as a general-purpose differential geometry engine
suitable for high-fidelity modeling in physics, engineering, and applied mathematics.

2. Relativistic and Non-Flat Coordinate Systems

Diggins, & Wik. (2026). PyMetric: A Geometry Informed Array Mathematics Package. Journal of Open Source Software, 11(117), 8901. 3
https://doi.org/10.21105/joss.08901.

https://doi.org/10.21105/joss.08901

The Journal of Open Source Software

= A key area of expansion is support for relativistic geometries, where the metric
tensor is no longer positive-definite and may depend dynamically on spacetime
coordinates. Planned features include:

= General Lorentzian manifolds, including Schwarzschild, Kerr, and FLRW spacetimes,
enabling direct modeling of astrophysical systems governed by Einstein's field
equations.

PyMetric is explicitly intended to be a modeling and analysis tool, not a time-domain simulation
engine. It provides geometric infrastructure for constructing and analyzing equations defined
on curved spacetimes, but does not aim to solve dynamical systems or perform numerical
integration of time-evolving fields.

Usage Example

To demonstrate the basic capabilities of the Pymetric library, we include a simple example of
the typical workflow computing the Laplacian (V?2) of a field in spherical coordinates. We use
F(r,0) = rcos(f) as our test function, which has a known Laplacian of zero. A visualization
of F(r,6) and its Laplacian is shown in Figure 1, demonstrating the library’s ability to perform
geometry-aware computations directly on array data.

import pymetric as pym
import numpy as np

Define spherical coordinate system and grid
cs = pym.coordinates.SphericalCoordinateSystem()
grid = pym.grids.GenericGrid(

cs,

[
np.linspace(0.1, 4.9, 300), #r
np.linspace(0.01, np.pi - 0.01, 100), # theta
np.linspace(0.01, 2 * np.pi - 0.01, 100), # pht

])

center="cell",
bbox=[(0, 5), (0, np.pi), (0, 2 * np.pi)],
ghost_zones=2,

Define scalar field F(r, theta) = r * cos(theta)
This is a good test case since Lap(F) = 0.
field = pym.DenseField.from_function(

lambda r, theta: r * np.cos(theta),

grid,

axes=["r", "theta"],

Compute Laplacian
F_lap = field.element_wise_laplacian()

Diggins, & Wik. (2026). PyMetric: A Geometry Informed Array Mathematics Package. Journal of Open Source Software, 11(117), 8901. 4
https://doi.org/10.21105/joss.08901.

https://doi.org/10.21105/joss.08901

The Journal of Open Source Software

F(r, ©) = rcos(8)

F(r, 6) and V2F(r, 0)

1.0 A

0.5 1

Figure 1: A scalar field F/(r,0) = 7 cos(f) and its Laplacian V2F(r, 8), computed in spherical coordinates
using PyMetric.

References

EinsteinPy Development Team. (2024). EinsteinPy: Python library for general relativity.
https://doi.org/10.48550/arXiv.2005.11288

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., & others. (2020). Array programming
with NumPy. Nature, 585(7825), 357-362. https://doi.org/10.1038/s41586-020-2649-2

Meurer, A., Smith, C. P., Paprocki, M., Certik, O., Kirpichev, S. B., Rocklin, M., Kumar,
A., lvanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,
R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., .. Scopatz, A.
(2017). SymPy: Symbolic computing in python. PeerJ Computer Science, 3, €103.
https://doi.org/10.7717 /peerj-cs.103

Perret, V. (2016). DICE: Disk initial conditions environment. Astrophysics Source Code
Library, ascl-1607.

The HDF Group. (n.d.). Hierarchical Data Format, version 5. https://github.com/HDFGroup/
hdf5

Turk, M. J., Smith, B. D., Oishi, J. S., Skory, S., Skillman, S. W., Abel, T., & Norman,
M. L. (2010). Yt: A multi-code analysis toolkit for astrophysical simulation data. The
Astrophysical Journal Supplement Series, 192(1), 9. https://doi.org/10.1088/0067-0049/
192/1/9

Diggins, & Wik. (2026). PyMetric: A Geometry Informed Array Mathematics Package. Journal of Open Source Software, 11(117), 8901. 5
https://doi.org/10.21105/joss.08901.

https://doi.org/10.48550/arXiv.2005.11288
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.7717/peerj-cs.103
https://github.com/HDFGroup/hdf5
https://github.com/HDFGroup/hdf5
https://doi.org/10.1088/0067-0049/192/1/9
https://doi.org/10.1088/0067-0049/192/1/9
https://doi.org/10.21105/joss.08901

@SS

The Journal of Open Source Software

Yurin, D., & Springel, V. (2014). GALIC: Galaxy initial conditions construction. Astrophysics
Source Code Library, ascl-1408. https://doi.org/10.48550/arXiv.1402.1623

Diggins, & Wik. (2026). PyMetric: A Geometry Informed Array Mathematics Package. Journal of Open Source Software, 11(117), 8901. 6
https://doi.org/10.21105/joss.08901.

https://doi.org/10.48550/arXiv.1402.1623
https://doi.org/10.21105/joss.08901

	Summary
	Statement of need
	Methodology
	Field and Grid Operations
	Future Development

	Usage Example
	References

