
FDTDX: High-Performance Open-Source FDTD
Simulation with Automatic Differentiation
Yannik Mahlau 1¶, Frederik Schubert 1, Lukas Berg 1, and Bodo
Rosenhahn 1

1 Institute of Information Processing, Leibniz University Hannover, Germany ¶ Corresponding author
DOI: 10.21105/joss.08912

Software
• Review
• Repository
• Archive

Editor: Fruzsina Agocs
Reviewers:

• @andrewgiuliani
• @victorapm

Submitted: 10 July 2025
Published: 13 January 2026

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The ability to precisely manipulate the propagation of light is an increasingly critical factor
in many modern applications. Aside from analytical solutions for simple geometries, the
majority of practical problems require robust numerical methods such as the finite-difference
time-domain (FDTD) method for discretizing Maxwell’s equations in both space and time.
We present FDTDX, an efficient implementation of the FDTD method with GPU acceleration
through the JAX framework. It provides a simple user interface for specifying a simulation
scene as well as a suite of tools for inverse design. Using the time reversibility of Maxwell’s
equations, gradients for optimizing the geometry of a design can be computated efficiently
within FDTDX.

Statement of Need

FDTDX implements the FDTD algorithm, which aims to simulate Maxwell’s equations 𝜕𝐻
𝜕𝑡 =

− 1
𝜇∇ × 𝐸 and 𝜕𝐸

𝜕𝑡 = 1
𝜖∇ × 𝐻, where 𝐸 and 𝐻 are the electric and magnetic fields. This

algorithm has been used in a number of research applications, for example in the field of
photonic integrated circuits (Augenstein & Rockstuhl, 2020), optical computing (Mahlau,
Schier, et al., 2025) or quantum computing (Larsen et al., 2025).

The FDTD algorithm has been well known for a long time and a number of open-source
packages already implement it. However, most previous packages implement the algorithm only
for CPU, thereby missing out on significant speedups through GPU acceleration. Additionally,
the implementation of the FDTD algorithm in JAX allows for automatic differentiation using a
specialized algorithm based on the time reversibility of Maxwell’s equations (Schubert et al.,
2025). In contrast to the adjoint method (Pontryagin, 2018), our custom gradient algorithm
can calculate a gradient in the time-domain without the need to save the electric and magnetic
field after every time step. This enables memory efficient inverse design, i.e. topological
optimization of optical components using gradient descent. The simulation capabilities of
FDTDX are useful for physicists from all kinds of backgrounds, while the inverse design
capabilities are targeted more towards computational scientists in particular.

A non-exhaustive list of FDTD implementations includes the popular Meep (Oskooi et al.,
2010), which was developed almost 20 years ago for execution on CPU and is still widely used
today. Other frameworks for CPU only include OpenEMS (Liebig, 2024), fdtd (Laporte, 2024)
and Ceviche (Hughes et al., 2019). Existing open-source packages that support execution on
GPU are Khronos (Hammond, 2024) and FDTD-Z (Lu & Vučković, 2024), but neither of these
packages are maintained. Additionally, various commercial implementations of FDTD exist.
Notably, Tidy3D (Flexcompute, 2022) is an extremely fast commercial software due to its GPU
acceleration. A comparison between the different software frameworks can be seen in Figure 1.

Mahlau et al. (2026). FDTDX: High-Performance Open-Source FDTD Simulation with Automatic Differentiation. Journal of Open Source
Software, 11(117), 8912. https://doi.org/10.21105/joss.08912.

1

https://orcid.org/0000-0003-0425-5003
https://orcid.org/0000-0001-8312-3943
https://orcid.org/0000-0002-5684-6975
https://orcid.org/0000-0003-3861-1424
https://doi.org/10.21105/joss.08912
https://github.com/openjournals/joss-reviews/issues/8912
https://github.com/ymahlau/fdtdx/
https://doi.org/10.5281/zenodo.17847223
https://fruzsinaagocs.github.io
https://orcid.org/0000-0002-1763-5884
https://github.com/andrewgiuliani
https://github.com/victorapm
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08912


Figure 1: Feature comparison between different FDTD software frameworks.

Implementation
As the name suggests, the Finite-Difference Time-Domain (FDTD) algorithm discretizes
Maxwell’s equations in space and time. To compute the curl operation efficiently using only a
single finite difference, the electric and magnetic fields are staggered in both space and time
according to the Yee grid (Yee, 1966). The initial electric and magnetic fields are updated in a
leapfrog pattern. First, the electric field is updated based on the magnetic field. Afterwards,
the newly computed electric field is the basis for updating the magnetic field. The staggering
through the Yee grids makes these updates very efficient, but as a consequence fields need
to be interpolated for accurate measurements. In FDTDX, physical values can be measured
through different detectors, which automatically perform interpolation.

To inject light into the simulation, the Total-Field Scattered-Field (TFSF) (Taflove & Hagness,
2005) formulation of a source is used in FDTDX. This formulation allows injecting light in a
single direction into the simulation. In contrast, a naive additive source implementation would
emit light in both directions perpendicular to the injection plane.

Two different boundary objects can be used to prevent unwanted reflections within the simula-
tion. A periodic boundary wraps the fields around the simulation volume and automatically
injects them on the other side. This is useful for simulating large repeating areas through a
single unit cell, for example in metamaterials (Yadav & Chowdhury, 2024). The other boundary
object is a perfectly matched layer (PML), which absorbs incoming light. Specifically, the PML
in FDTDX is implemented in the form of a convolutional PML (Roden & Gedney, 2000).

Figure 2: Visualization of a simulation scene using the fdtdx.plot_setup function.

In FDTDX, the specification of a simulation is simplified by the implementation of a constraint
system. The position and size of sources, detectors or any other simulation objects can be
specified using relative constraints. For example, it might make sense to position a detector
next to a source for measuring the input energy in the simulation. If both detector and source
are placed independently, then moving one of the objects also requires moving the other. With
only two objects this is manageable, but with more objects such adaptations quickly become a
burden. In contrast, in FDTDX the position between objects can be specified relative to each
other. Consequently, if one of the objects is moved, the other object automatically moves as
well. Additionally, FDTDX implements utility functions for easily plotting a visualization of the

Mahlau et al. (2026). FDTDX: High-Performance Open-Source FDTD Simulation with Automatic Differentiation. Journal of Open Source
Software, 11(117), 8912. https://doi.org/10.21105/joss.08912.

2

https://doi.org/10.21105/joss.08912


simulation scene. Such a visualization can be seen in Figure 2. Similarly, plotting functions are
implemented for detectors to visualize the results of a simulation in the form of an image or
video. The 𝐸𝑧 for the same simulation scene is visualized in Figure 3.

Figure 3: Visualization of the 𝐸𝑧 field in a simulation as output of an fdtdx.FieldDetector.

Limitations and Future Work
At the time of publication, FDTDX only supports simulation of linear, non-dispersive materials.
Additionally, lossy materials are currently only partially supported. In the future, an imple-
mentation of dispersive material models (Taflove & Hagness, 2005) is planned. Simulating
non-linear materials is a difficult task due to the necessary theoretical physical knowledge
as well as the capability to experimentally verify the simulation results in the lab. We are
determined to tackle this, but acknowledge that this will require significant effort and time.

Further Information
The full API and tutorials can be found at the FDTDX documentation. The source code is
publicly available via the corresponding Github repository. Additionally, our conference paper
on large-scale FDTD simulations (Mahlau, Schubert, et al., 2025) provides a good introduction
to FDTDX.

Acknowledgements
We thank Antonio Calà Lesina, Reinhard Caspary and Konrad Bethmann for helping us
understand the physics behind Maxwell’s equations and how to implement them within FDTD.
Additionally, we acknowledge Fabian Hartmann for the initial idea of implementing a GPU
accelerated FDTD algorithm. Moreover, community contributions from Marko Simic, Tianxiang
Dai, Vatsal Limbachia, Agustín Galante, Rachel Smith, Quentin Wach and Robin Giesecke
improved features of FDTDX.

This work was supported by the Federal Ministry of Education and Research (BMBF), Ger-
many under the AI service center KISSKI (grant no. 01IS22093C), the European Union
within the Horizon Europe research and innovation programme under grant agreement no.
101136006 – XTREME, the Lower Saxony Ministry of Science and Culture (MWK) through the
zukunft.niedersachsen program of the Volkswagen Foundation and the Deutsche Forschungs-
gemeinschaft (DFG) under Germany’s Excellence Strategy within the Cluster of Excellence
PhoenixD (EXC 2122) and (RO2497/17-1). Additionally, this was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) – 517733257.

Mahlau et al. (2026). FDTDX: High-Performance Open-Source FDTD Simulation with Automatic Differentiation. Journal of Open Source
Software, 11(117), 8912. https://doi.org/10.21105/joss.08912.

3

https://ymahlau.github.io/fdtdx/
https://github.com/ymahlau/fdtdx
https://www.hot.uni-hannover.de/de/calalesina
https://www.phoenixd.uni-hannover.de/de/caspary
https://www.tnt.uni-hannover.de/de/staff/bethmann/
https://www.tnt.uni-hannover.de/de/staff/hartmann/
https://github.com/msimicphysics
https://github.com/txdai
https://github.com/txdai
https://github.com/renaissancenerd
https://github.com/galcerte
https://github.com/rachsmith1
https://github.com/QuentinWach
https://github.com/TheDarkchip
https://doi.org/10.21105/joss.08912


References
Augenstein, Y., & Rockstuhl, C. (2020). Inverse design of nanophotonic devices with structural

integrity. ACS Photonics, 7 (8), 2190–2196. https://doi.org/10.1021/acsphotonics.0c00699

Flexcompute. (2022). Tidy3D: Hardware-accelerated electromagnetic solver for fast simulations
at scale. https://www.flexcompute.com/download-whitepaper/.

Hammond, A. (2024). Khronos. GitHub repository. https://github.com/facebookresearch/
Khronos.jl

Hughes, T. W., Williamson, I. A., Minkov, M., & Fan, S. (2019). Forward-mode differentiation
of Maxwell’s equations. ACS Photonics, 6(11), 3010–3016. https://doi.org/10.1021/
acsphotonics.9b01238

Laporte, F. (2024). Python 3D FDTD simulator. GitHub repository. https://github.com/
flaport/fdtd

Larsen, M., Bourassa, J., Kocsis, S., Tasker, J., Chadwick, R., González-Arciniegas, C., Hastrup,
J., Lopetegui-González, C., Miatto, F., Motamedi, A., & others. (2025). Integrated
photonic source of Gottesman–Kitaev–Preskill qubits. Nature, 1–5. https://doi.org/10.
1038/s41586-025-09044-5

Liebig, T. (2024). openEMS - open electromagnetic field solver. General; Theoretical
Electrical Engineering (ATE), University of Duisburg-Essen; https://www.openEMS.de.
https://www.openEMS.de

Lu, J., & Vučković, J. (2024). Fdtd-z: A systolic scheme for GPU-accelerated nanophotonic
simulation. GitHub repository. https://github.com/spinsphotonics/fdtdz

Mahlau, Y., Schier, M., Reinders, C., Schubert, F., Bügling, M., & Rosenhahn, B. (2025).
Multi-agent reinforcement learning for inverse design in photonic integrated circuits. Rein-
forcement Learning Journal, 6, 1794–1815. https://doi.org/10.48550/arXiv.2506.18627

Mahlau, Y., Schubert, F., Bethmann, K., Caspary, R., Lesina, A. C., Munderloh, M., Ostermann,
J., & Rosenhahn, B. (2025). A flexible framework for large-scale FDTD simulations:
Open-source inverse design for 3D nanostructures. Photonic and Phononic Properties of
Engineered Nanostructures XV, 13377, 40–52. https://doi.org/10.1117/12.3052639

Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., & Johnson,
S. G. (2010). Meep: A flexible free-software package for electromagnetic simulations
by the FDTD method. Computer Physics Communications, 181(3), 687–702. https:
//doi.org/10.1016/j.cpc.2009.11.008

Pontryagin, L. S. (2018). Mathematical theory of optimal processes. Routledge. https:
//doi.org/10.1201/9780203749319

Roden, J. A., & Gedney, S. D. (2000). Convolution PML (CPML): An efficient FDTD
implementation of the CFS–PML for arbitrary media. Microwave and Optical Technology
Letters, 27(5), 334–339. https://doi.org/10.1002/1098-2760(20001205)27:5%3C334::
AID-MOP14%3E3.0.CO;2-A

Schubert, F., Mahlau, Y., Bethmann, K., Hartmann, F., Caspary, R., Munderloh, M., Os-
termann, J., & Rosenhahn, B. (2025). Quantized inverse design for photonic integrated
circuits. ACS Omega, 10(5), 5080–5086. https://doi.org/10.1021/acsomega.4c10958

Taflove, A., & Hagness, S. C. (2005). Computational electrodynamics: The finite-
difference time-domain method (3rd ed.). Artech House. https://doi.org/10.1016/
B978-012170960-0/50046-3

Yadav, R., & Chowdhury, R. (2024). Impact of unit cell variation on visible spectrum multiband
metamaterial absorbers. 2024 IEEE Microwaves, Antennas, and Propagation Conference

Mahlau et al. (2026). FDTDX: High-Performance Open-Source FDTD Simulation with Automatic Differentiation. Journal of Open Source
Software, 11(117), 8912. https://doi.org/10.21105/joss.08912.

4

https://doi.org/10.1021/acsphotonics.0c00699
https://github.com/facebookresearch/Khronos.jl
https://github.com/facebookresearch/Khronos.jl
https://doi.org/10.1021/acsphotonics.9b01238
https://doi.org/10.1021/acsphotonics.9b01238
https://github.com/flaport/fdtd
https://github.com/flaport/fdtd
https://doi.org/10.1038/s41586-025-09044-5
https://doi.org/10.1038/s41586-025-09044-5
https://www.openEMS.de
https://github.com/spinsphotonics/fdtdz
https://doi.org/10.48550/arXiv.2506.18627
https://doi.org/10.1117/12.3052639
https://doi.org/10.1016/j.cpc.2009.11.008
https://doi.org/10.1016/j.cpc.2009.11.008
https://doi.org/10.1201/9780203749319
https://doi.org/10.1201/9780203749319
https://doi.org/10.1002/1098-2760(20001205)27:5%3C334::AID-MOP14%3E3.0.CO;2-A
https://doi.org/10.1002/1098-2760(20001205)27:5%3C334::AID-MOP14%3E3.0.CO;2-A
https://doi.org/10.1021/acsomega.4c10958
https://doi.org/10.1016/B978-012170960-0/50046-3
https://doi.org/10.1016/B978-012170960-0/50046-3
https://doi.org/10.21105/joss.08912


(MAPCON), 1–5. https://doi.org/10.1109/MAPCON61407.2024.10923310

Yee, K. (1966). Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3),
302–307. https://doi.org/10.1109/TAP.1966.1138693

Mahlau et al. (2026). FDTDX: High-Performance Open-Source FDTD Simulation with Automatic Differentiation. Journal of Open Source
Software, 11(117), 8912. https://doi.org/10.21105/joss.08912.

5

https://doi.org/10.1109/MAPCON61407.2024.10923310
https://doi.org/10.1109/TAP.1966.1138693
https://doi.org/10.21105/joss.08912

	Summary
	Statement of Need
	Implementation
	Limitations and Future Work
	Further Information
	Acknowledgements
	References

