
Qualpal: Qualitative Color Palettes for Everyone
Johan Larsson 1

1 Department of Mathematical Sciences, University of Copenhagen, Denmark
DOI: 10.21105/joss.08936

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @dmreagan
• @clauswilke

Submitted: 19 August 2025
Published: 16 October 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Qualpal is a C++ library, command-line tool, R package, and web app for creating qualitative
color palettes with maximally distinct colors. It helps scientists and anyone working with data
visualization choose colors that remain clear and accessible. Qualpal features flexible palette
generation from multiple input formats, such as the HSL and LCHab color spaces or fixed
sets of RGB colors, and can adapt palettes to color vision deficiencies (CVD) across the full
dichromacy spectrum at any severity. At its core, Qualpal is a lightweight C++ library with
no external dependencies, making it easy to integrate into other software and programming
languages.

Statement of need
Effective visualization of categorical data requires color palettes with easily distinguishable
colors—for both people with normal color vision and those with CVD. Designing a palette
is therefore an optimization problem, where the goal is to maximize the minimum difference
among the colors in the palette in order to make the palette as distinct as possible. This
is a non-trivial problem, since the number of possible palettes grows exponentially with the
number of colors in the palette. And as the number of colors in a palette increases, the
minimum distance between colors necessarily decreases, since the colors must be spread out
more densely in the color space. As a result, any given palette can, at best, be optimal only for
a particular size. And since users may also have specific requirements in terms of, for instance,
hue, lightness, saturation, adaptation to CVD, or background color, it is impossible to provide
a set of fixed palettes to cover these needs. Therefore, there is a need for flexible palette
generation tools that can accommodate a wide range of user requirements and preferences.

This problem has been tackled by, for instance, Glasbey et al. (2007), who developed an
algorithm based on simulated annealing that is available in the Python package Glasbey
(McInnes, 2025). Other tools include iWantHue (Jacomy, 2013/2025), Colorgorical (Gramazio
et al., 2016), distinctipy (Roberts et al., 2019/2024), and Palettailor (Lu et al., 2021). All of
these packages rely on some metric to measure the distance between colors and use some form
of optimization algorithm, such as simulated annealing, to find a set of colors that maximizes
the minimum distance between them in the palette. We summarize these existing packages
and their features in Table 1 and Table 2, respectively.

Table 1: Summary of related work and packages, in terms of their algorithms, color difference metrics,
input types, and implementation languages.

Package Algorithm Metrics Input Language
Glasbey Simulated annealing CIE76 LCHab, Fixed Python

iWantHue 𝑘-means, force
vector

CIE76 LCHab JavaScript

Colorgorical Random sampling CIEDE2000 LCHab Python, C

Larsson. (2025). Qualpal: Qualitative Color Palettes for Everyone. Journal of Open Source Software, 10(114), 8936. https://doi.org/10.21105/
joss.08936.

1

https://orcid.org/0000-0002-4029-5945
https://ror.org/035b05819
https://doi.org/10.21105/joss.08936
https://github.com/openjournals/joss-reviews/issues/8936
https://github.com/jolars/qualpal
https://doi.org/10.5281/zenodo.17194762
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/dmreagan
https://github.com/clauswilke
https://creativecommons.org/licenses/by/4.0/
https://github.com/jolars/qualpal
https://cran.r-project.org/package=qualpalr
https://qualpal.cc
https://doi.org/10.21105/joss.08936
https://doi.org/10.21105/joss.08936


Package Algorithm Metrics Input Language
distinctipy Random sampling Luv approx Pastel filter Python

Palettailor Simulated annealing CIEDE2000 Hue, lightness JavaScript

Qualpal Farthest points CIEDE2000, DIN99d,
CIE76

HSL, LCHab,
Fixed

C++

All of these existing packages have different strengths and weaknesses. qualpal is, however,
the first C++ library, CLI tool, and R package for generating qualitative color palettes. It is also
the first package to implement a farthest point sampling algorithm for generating qualitative
color palettes, and the only one to support multiple types of CVD. In addition, it is the only
package to support input from the HSL color space, which represents an intuitive way to
specify colors in terms of hue, saturation, and lightness. It also supports multiple metrics
for measuring color distance, including CIEDE2000 (Sharma et al., 2005) and DIN99d (Cui
et al., 2002), where the former is the current standard for color difference advocated by the
International Commission on Illumination (CIE) and the latter is based on Euclidean distances
in the DIN99d color space, which improves upon the CIE76 metric that uses the CIELab color
space.

Table 2: Summary of features of existing packages, in terms of color vision adaptation (CVD), availability
of a web app (Web), command-line interface (CLI), ability to extend existing palettes, option to adapt to
a background color, and possibility to create palettes with related blocks (such as pairs).

Package CVD Web CLI Extend
Back-

ground Blocks
Glasbey ✓ ✓ ✓
iWantHue ✓ ✓1 ✓
Colorgorical ✓2

distinctipy ✓
Palettailor ✓3 ✓
Qualpal ✓ ✓4 ✓ ✓ ✓

Examples
In this section we show some examples of palettes generated with Qualpal. We begin with a
palette generated from candidate colors from part of the HSL color space, defined by hue in
[0∘, 60∘] and [170, 360)5, saturation in [0, 0.7], and lightness in [0.2, 0.8]. This produces the
palette shown in Figure 1. The command to generate this palette is:

qualpal -n 5 -i colorspace "-190:60" "0:0.7" "0.2:0.8"

#e1d65f #e1888c #7fbbd9 #4c2026 #214f53

Figure 1: A palette of five colors generated from input colors as a subspace of the HSL colorspace.

1https://medialab.github.io/iwanthue/
2http://vrl.cs.brown.edu/color (but down at the time of writing)
3https://iamkecheng.github.io/palettailor/
4https://qualpal.cc
5Note that we specify -190 as the starting point in Qualpal to wrap around the hue wheel.

Larsson. (2025). Qualpal: Qualitative Color Palettes for Everyone. Journal of Open Source Software, 10(114), 8936. https://doi.org/10.21105/
joss.08936.

2

https://medialab.github.io/iwanthue/
http://vrl.cs.brown.edu/color
https://iamkecheng.github.io/palettailor/
https://qualpal.cc
https://doi.org/10.21105/joss.08936
https://doi.org/10.21105/joss.08936


Next, we show another palette generated from similar input from the HSL color space. But this
time we adapt the palette to the color vision deficiency types protanomaly (at 80% severity)
and tritanomaly (at full severity). The resulting palette is shown in Figure 2. Here, we show
how to generate this palette using the C++ library interface:

#include <qualpal.h>

auto pal = qualpal::Qualpal{}

.setInputColorspace({ -190, 60 }, { 0, 0.7 }, { 0.2, 0.8 })

.setCvd({ { "protan", 0.8 }, { "tritan", 1.0 } })

.generate(4);

#2c3588 #cb3d2c #cdca4c #aa9fe0

Figure 2: A palette of four colors, generated from colors sampled from a portion of the HSL color space,
and adapted to protanomaly and tritanomaly.

Qualpal also features a set of built-in palettes. In this example, we begin with a palette derived
from Johannes Vermeer’s Girl with a Pearl Earring, and pick four colors from it. We also
optimize the palette to distinguish it from a background color of white. The resulting palette
is displayed in Figure 3. This time, we have used the R package qualpalr:

library(qualpalr)

pal <- qualpal(4, "Vermeer:PearlEarring", bg = "white")

#80a0c7 #100f14 #a65141 #b1934a

Figure 3: A palette derived from the colors in Vermeer’s Girl with a Pearl Earring, optimized to be
distinguished from a white canvas.

Finally, we show how to extend an existing palette, in this case one consisting of three colors
inspired by the Bauhaus art movement. We consider a fixed set of four input colors from the
Okabe-Ito palette (Okabe & Ito, 2008) as input. The result is shown in Figure 4 and the CLI
command we used to generate this palette is:

qualpal -n 4 \

-i hex "#000000" "#e69f00" "#56b4e9" "#009e73" \

--extend "#B33A3A" "#2F5DA5" "#E1B84A"

#b33a3a #2f5da5 #e1b84a #009e73

Figure 4: An example of extending an existing palette of three colors (blue, red, and yellow), with
candidates from the Okabe-Ito palette.

Larsson. (2025). Qualpal: Qualitative Color Palettes for Everyone. Journal of Open Source Software, 10(114), 8936. https://doi.org/10.21105/
joss.08936.

3

https://cran.r-project.org/package=qualpalr
https://doi.org/10.21105/joss.08936
https://doi.org/10.21105/joss.08936


Summary of the algorithm
Qualpal begins with a set of input colors. These can be a fixed set of colors provided by the
user, one of the built-in palettes, or a subspace in the LCHab or HSL color spaces. In the latter
case, we use a quasi-random Halton sequence (Halton, 1964) to distribute colors throughout
this subspace. The input colors are then (optionally) projected into a color space corresponding
to one or several CVD types, such as protanopia or deuteranopia, using simulation methods
described by Machado et al. (2009).

Next, we compute a full color distance matrix for the colors in the input set, using the
CIEDE2000 (Sharma et al., 2005) color difference metric by default. Finally, we run a farthest
point sampling algorithm loosely based on the work by Schlömer et al. (2011), which iteratively
swaps colors between a candidate palette and its complement set until no swap can improve
the minimum distance between colors in the candidate palette. Optionally, a background color
can be included in this step, in which case the palette is optimized to be distinct from it. The
algorithm is deterministic (unlike the other algorithms from Table 1) and takes roughly 0.1
seconds to generate a 10-color palette from a set of 1000 input colors on a modern laptop.

Acknowledgements
Bruce Lindbloom’s webpage has been instrumental in the development of Qualpal, serving as
a vital reference for color space conversions and color difference calculations.

References
Cui, G., Luo, M. R., Rigg, B., Roesler, G., & Witt, K. (2002). Uniform colour spaces based

on the DIN99 colour-difference formula. Color Research & Application, 27(4), 282–290.
https://doi.org/10.1002/col.10066

Glasbey, C., van der Heijden, G., Toh, V. F. K., & Gray, A. (2007). Colour displays for categorical
images. Color Research & Application, 32(4), 304–309. https://doi.org/10.1002/col.20327

Gramazio, C. C., Laidlaw, D. H., & Schloss, K. B. (2016). Colorgorical: Creating discriminable
and preferable color palettes for information visualization. IEEE Transactions on Visual-
ization and Computer Graphics, 23(1), 521–530. https://doi.org/10.1109/TVCG.2016.
2598918

Halton, J. H. (1964). Algorithm 247: Radical-inverse quasi-random point sequence. Commun.
ACM, 7 (12), 701–702. https://doi.org/10.1145/355588.365104

Jacomy, M. (2025). iWantHue. Médialab Sciences Po. https://github.com/medialab/iwanthue
(Original work published 2013)

Lu, K., Feng, M., Chen, X., Sedlmair, M., Deussen, O., Lischinski, D., Cheng, Z., & Wang, Y.
(2021). Palettailor: Discriminable colorization for categorical data. IEEE Transactions on
Visualization and Computer Graphics, 27(02), 475–484. https://doi.org/10.1109/TVCG.
2020.3030406

Machado, Gustavo. M., Oliveira, Manuel. M., & Fernandes, Leandro. A. (2009). A
physiologically-based model for simulation of color vision deficiency. IEEE Transactions on
Visualization and Computer Graphics, 15(6), 1291–1298. https://doi.org/10.1109/tvcg.
2009.113

McInnes, L. (2025). Glasbey (Version 0.3.0). https://github.com/lmcinnes/glasbey

Okabe, M., & Ito, K. (2008, September 24). Color universal design (CUD): How to make
figures and presentations that are friendly to colorblind people [JFLY]. https://jfly.uni-koeln.
de/color/

Larsson. (2025). Qualpal: Qualitative Color Palettes for Everyone. Journal of Open Source Software, 10(114), 8936. https://doi.org/10.21105/
joss.08936.

4

http://www.brucelindbloom.com/
https://doi.org/10.1002/col.10066
https://doi.org/10.1002/col.20327
https://doi.org/10.1109/TVCG.2016.2598918
https://doi.org/10.1109/TVCG.2016.2598918
https://doi.org/10.1145/355588.365104
https://github.com/medialab/iwanthue
https://doi.org/10.1109/TVCG.2020.3030406
https://doi.org/10.1109/TVCG.2020.3030406
https://doi.org/10.1109/tvcg.2009.113
https://doi.org/10.1109/tvcg.2009.113
https://github.com/lmcinnes/glasbey
https://jfly.uni-koeln.de/color/
https://jfly.uni-koeln.de/color/
https://doi.org/10.21105/joss.08936
https://doi.org/10.21105/joss.08936


Roberts, J., Crall, J., Ang, K.-M., & Brandt, Y. (2024). Distinctipy (Version v1.3.4). Zenodo.
https://doi.org/10.5281/zenodo.10480933 (Original work published 2019)

Schlömer, T., Heck, D., & Deussen, O. (2011). Farthest-point optimized point sets with
maximized minimum distance. Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics, 135–142. https://doi.org/10.1145/2018323.2018345

Sharma, G., Wu, W., & Dalal, E. N. (2005). The CIEDE2000 color-difference formula:
Implementation notes, supplementary test data, and mathematical observations. Color
Research & Application, 30(1), 21–30. https://doi.org/10.1002/col.20070

Larsson. (2025). Qualpal: Qualitative Color Palettes for Everyone. Journal of Open Source Software, 10(114), 8936. https://doi.org/10.21105/
joss.08936.

5

https://doi.org/10.5281/zenodo.10480933
https://doi.org/10.1145/2018323.2018345
https://doi.org/10.1002/col.20070
https://doi.org/10.21105/joss.08936
https://doi.org/10.21105/joss.08936

	Summary
	Statement of need
	Examples
	Summary of the algorithm
	Acknowledgements
	References

