The Journal of Open Source Software

DOI: 10.21105/joss.08964

Software
= Review @0
= Repository &0
= Archive &0

Editor: Neea Rusch &

Reviewers:

= @jolars
= @ymahlau
= @navekshasood

Submitted: 09 July 2025
Published: 11 November 2025

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

Tabbed: A Python package for reading variably
structured text files at scale

Matthew S. Caudill ® 12

1 Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States of America 2
Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United
States of America

Summary

Delimiter separated value (DSV) text files are ubiquitous for representing tabular data. For
example, a search of GitHub for comma separated value files, a subset of the DSV format,
returns 75 million matches. They are simple to create, easy to share, and can encode a variety
of data types. Despite their broad use, variability in the formatting and structure of DSV files
has hindered attempts to automate their parsing for decades. The clevercsv package (Burg et
al., 2019) made significant progress on this problem with consistency measures that accurately
detect a file's dialect: delimiter, quote character, and escape character. The structure of a
DSV file introduces another source of variability. DSVs may contain a metadata section that
offsets the header and start row. Tabbed uses row length and type consistency measures to
automatically detect metadata, header and data sections of a DSV file. Furthermore, tabbed
provides a value-based conditional reader for reading these irregular DSV files at scale.

Statement of need

To the best of our knowledge, no parser of DSV files exists that can locate the start of the
data section irrespective of the presence of metadata and/or a header. Further, we found
no reader of DSV files that can conditionally read rows from the data section based on a
row's type casted values. We here define a set of desiderata for parsing irregular text files that
optionally contain metadata, header, and ragged data rows. To motivate this set, we consider
the DSV shown in Figure 1.

Experiment ID; Experiment

Animal ID; Animal

Researcher; Test

path = '/lhome/user/experiments/states.txt'

Number | Start Timeg Runtime | Annotation

02/09/22 09:17:38.948 | 0.0000 | Started Recording
02/09/22 09:37:00.000 | 1161.0520 | start
2| 02/09/22 09:37:00.000 | 1161.0520 | exploring
3102/09/22 09:37:08.784 | 1169.8360 | grooming
4102/09/22 09:37:13.897 | 1174.9490 | exploring

S
NROOWO®NOUBRWNE
=)

Figure 1: The first 12 lines of a delimiter separated file named sample.txt with metadata on lines 1-4
and a header on line 7. The metadata contains both semicolon-delimited and undelimited strings. Notice
the data section uses a different delimiter than the metadata and contains mixed data types.

Caudill. (2025). Tabbed: A Python package for reading variably structured text files at scale. Journal of Open Source Software, 10(115), 8964. 1
https://doi.org/10.21105/joss.08964.

https://orcid.org/0000-0002-3656-9261
https://doi.org/10.21105/joss.08964
https://github.com/openjournals/joss-reviews/issues/8964
https://github.com/mscaudill/tabbed
https://doi.org/10.5281/zenodo.17554453
https://nkrusch.github.io
https://orcid.org/0000-0002-7354-5330
https://github.com/jolars
https://github.com/ymahlau
https://github.com/navekshasood
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08964

The Journal of Open Source Software

Structural Detection

A header line (line 7 of Figure 1) marks the boundary between the metadata and data sections
of a file. Detection of this line is critical for correct automated parsing. Tabbed can locate a
header line using string inconsistencies or type inconsistencies depending on the data types
represented in the file. Importantly, some irregular DSV files do not have a header. In this case
tabbed generates a header based on the number of data columns it measures from a sample of
the file.

Type Casting

Strings in the data section of the file shown in Figure 1 represent mixed types that need
to be type casted. Tabbed supports conversion to int, float, complex, time, date and
datetime instances. These conversions are graceful, returning strings on failure and logging
the conversion problem for post-reading introspection.

Value-based Filtering

Selectively reading rows from a DSV file based on type casted content is extremely useful for
selecting subsets of the data. For example, in the sample file of Figure 1, users may want to only
read data rows where the column named Annotation has a string value of exploring. Tabbed
supports both column selection and row filtering with equality, membership, rich comparison,
regular expression matching, and custom callables. To support an intuitive interface for creating
these filters, tabbed uses simple keyword arguments passed to a method called tab of the
Reader class. Below we illustrate the simplicity of constructing these filters for the sample file
shown in Figure 1.

from tabbed.reading import Reader

with open('sample.txt', 'r') as infile:
reader = Reader(infile)

reader.tab(Start_Time ='>=2/09/2022 9:37:00', Annotation = 'exploring')
result = reader.read()

Iterative Reading

DSV files have no file size limits making it essential that readers support file streaming.
Tabbed's reader returns an iterator whose per-iteration memory consumption is tunable. For
speed, this feature is implemented using a first-in-first-out (FIFO) data structure with O(1)
time complexity allowing tabbed to linearly scale to large files.

Comparison

Tablib (Reitz, 2016), comma (Lumbroso, 2020), pandas (McKinney, 2010; The pandas
development team, 2025) and frictionless-py (Karev et al., 2025) are popular alternative
packages to tabbed. Table 1 compares their respective features. Pandas read_csv and
Frictionless' extract functions most closely match the available features in tabbed. Both
support broad type casting and iterative reading of large files. However, both require specifying
the header row if metadata is written to the file. This per file specification of the header
location makes batch reading of text files with varying structure difficult. Additionally, neither
package stores the skipped metadata section for later use.

Caudill. (2025). Tabbed: A Python package for reading variably structured text files at scale. Journal of Open Source Software, 10(115), 8964. 2
https://doi.org/10.21105/joss.08964.

https://doi.org/10.21105/joss.08964

JEISS

The Journal of Open Source Software

Table 1: Comparison of features for four common open-source software packages for reading DSV files.
Plus (+) and minus (-) indicates package support or lack of support for each feature respectively.

Software Structural Detection Casting Value-based Filtering Iterative
tablib - + Row Equality Only -
comma - limited - -
pandas - + Columns Only +

frictionless - + + +
tabbed + + + +

Given that pandas read_csv closely matches tabbed’s capabilities, we tested tabbed's read
speeds against pandas in Figure 2. For this test, we selected the python engine in pandas
rather than the c or pyarrow engines which are an order of magnitude faster but do not
support dialect inference like pandas python engine or tabbed's Reader class. The speed test
was conducted on a DSV file with all floats and a DSV file with floats and datetime instances.
The file size in each case was 10 columns by 100,000 rows. The left panel of Figure 2 shows
that tabbed is slower on both the float and mixed type files. Nevertheless, users can expect to
read millions of cells from a DSV file in just a few seconds with tabbed.

14
Tabbed 0.80
O Pandas +
- 1.2 |
E ® o
= 0.751 ’
1S
i S] ®
8 (]
» 0.81(@ 0.704 o
P * s
> o
© 06
0.651 Float Filtered
o
0.4 T T
Float Type Mixed Type 0 2 4 6 8

Filters Per Row

Figure 2: Tabbed and pandas read speed comparison. Left: Comparison of number of cells casted per
second between tabbed and pandas for DSV files composed of floats or mixed types. The conversion
engine for pandas was chosen to be “python”. Right: Tabbed's read speed as a function of the number
of filters applied to each row during reading. In both panels black circles and error bars are the mean
and standard deviation across 30 trials. These comparisons were carried out on a single 2.4 GHz Intel
Core i5-6300U processor.

To further understand tabbed’s performance, we tested how row filtering impacts read speeds.
The right panel of Figure 2 shows the read speed as a function of the number of filters
applied to each data row. The left-most point is the baseline with no filters. We measure an
approximate 2% reduction in speed for each new filter added.

Conclusion

Automated reading of large irregularly structured DSV files, a format that is broadly used, is
an open challenge. Tabbed's four features—structural detection, type casting, value-based
filtering, and iterative row reading—work together to automate reading of these files. The
simple interface and deeply tested API of these features (see documentation) makes tabbed
accessible to a broad audience of analysts, researchers, and developers across disciplines.

Caudill. (2025). Tabbed: A Python package for reading variably structured text files at scale. Journal of Open Source Software, 10(115), 8964. 3
https://doi.org/10.21105/joss.08964.

https://mscaudill.github.io/tabbed/
https://doi.org/10.21105/joss.08964

The Journal of Open Source Software

Acknowledgements

We thank Claudia Singhal for her thoughtful reading of the manuscript and Brad Sheppard for
useful discussions about testing tabbed.

We are grateful for the support of the Ting Tsung and Wei Fong Chao Foundation and the Jan
and Dan Duncan Neurological Research Institute at Texas Children's that generously supports
tabbed.

References

Burg, G. J. J. van den, Nazébal, A., & Sutton, C. (2019). Wrangling messy CSV files by
detecting row and type patterns. Data Mining and Knowledge Discovery, 33(6), 1799-1820.
https://doi.org/10.1007/s10618-019-00646-y

Karev, E., Camilleri, P., Baptista, V., Bere, G., Borruso, A., Desmet, P., Gharti, S., Herrmann,
A., Kariv, A., Shaw, C., Walsh, P., Winfree, L., Zanella Alvarenga, E., Zedlitz, J.,
Foundation, O. K., & Petti, S. (2025). Frictionless: Python library for data packages
(Version v5.18.1). Zenodo. https://doi.org/10.5281/zenodo.15085933

Lumbroso, J. (2020). Comma (Version 0.5.4). GitHub. https://github.com/jlumbroso/comma

McKinney, Wes. (2010). Data Structures for Statistical Computing in Python. In Stéfan van
der Walt & Jarrod Millman (Eds.), Proceedings of the 9th Python in Science Conference
(pp. 56—61). https://doi.org/10.25080/Majora-92bf1922-00a

Reitz, K. (2016). Tablib: Pythonic tabular datasets (Version 3.8.0). GitHub. https://github.
com/jazzband /tablib

The pandas development team. (2025). Pandas-dev/pandas: pandas (Version v2.3.2). Zenodo.
https://doi.org/10.5281/zenodo.16918803

Caudill. (2025). Tabbed: A Python package for reading variably structured text files at scale. Journal of Open Source Software, 10(115), 8964. 4
https://doi.org/10.21105/joss.08964.

https://doi.org/10.1007/s10618-019-00646-y
https://doi.org/10.5281/zenodo.15085933
https://github.com/jlumbroso/comma
https://doi.org/10.25080/Majora-92bf1922-00a
https://github.com/jazzband/tablib
https://github.com/jazzband/tablib
https://doi.org/10.5281/zenodo.16918803
https://doi.org/10.21105/joss.08964

	Summary
	Statement of need
	Structural Detection
	Type Casting
	Value-based Filtering
	Iterative Reading

	Comparison
	Conclusion
	Acknowledgements
	References

