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Summary
Albedo is a key variable determining the amount of solar radiation absorbed by snow and ice
surfaces. As such, it influences meltwater production, glacier mass balance, and the energy
exchange between the Earth and the atmosphere (Hock, 2005; Jonsell et al., 2003). Satellite
remote sensing has been widely recognized as the best practical approach for monitoring and
mapping surface albedo across different spatial and temporal scales (Lin et al., 2022; Urraca
et al., 2023). Here, we present the SatRbedo R package: an extensible, standalone toolbox for
retrieving snow and ice albedo from medium-resolution multispectral optical satellite imagery.
The package includes functions for image preprocessing, converting nadir satellite observations
to off-nadir values using view-angle corrections, detecting topographic shadows, discriminating
snow and ice surfaces, correcting for topographic effects and the anisotropic behavior of
radiation reflected by glacier snow and ice, and converting narrowband to broadband albedo.
The package has a modular structure that allows for changing the implemented routines and
provides output that can be used independently or as input to other functions. SatRbedo

is optimized for Landsat and Sentinel-2 data but can also process data from other medium-
resolution sensors (e.g., ALOS/AVNIR-2, SPOT, and ASTER), provided they meet the required
input data specifications. For example, if at-sensor radiance data is available, atmospheric
correction is required before using the package. Additionally, cross-sensor calibration should be
performed to minimize spectral differences between sensors.

Statement of need
The land surface albedo is an essential climate variable that controls the partitioning of radiative
energy between the surface and the atmosphere (Bojinski et al., 2014; Radeloff et al., 2024).
In the cryosphere, albedo ranges from <0.1 for debris-covered ice to 0.3-0.4 for bare ice to
~0.5 for aged, wet snow to >0.9 for fresh, dry snow (Cuffey & Paterson, 2010). Snow and ice
albedo depend on the inherent optical properties of the surface (including snow grain size and
shape, snowpack thickness, surface roughness, and water and impurity content) and are also
influenced by environmental conditions (apparent albedo), including the angular and spectral
distribution of solar radiation, topography, the underlying substrate for thin snow cover, and
cloud cover (Warren, 2019; Whicker et al., 2022).

Albedo can be measured in the field using observations from a pyranometer pair, one looking
upward and the other looking downward (Driemel et al., 2018; Picard et al., 2020). Although
these instruments provide highly accurate point measurements, they have limited spatial
coverage due to their relatively small footprint. Alternatively, albedo can be estimated from
satellite remote sensing (Bertoncini et al., 2022; Fugazza et al., 2016), which offers the best
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option for studying albedo changes, considering its high spatial and temporal variability (Berg
et al., 2020).

Satellite albedo retrievals typically comprise three steps: atmospheric correction, modeling of
the angular reflectance, and narrow-to-broadband albedo conversion (Carlsen et al., 2020; Qu
et al., 2015). The algorithms for atmospheric correction (Doxani et al., 2023; Vermote et al.,
2016), angular reflectance modelling (Klok et al., 2003; Lucht et al., 2000; Ren et al., 2021),
and narrow-to-broadband albedo conversion (Knap et al., 1999; Li et al., 2018; Liang, 2001)
are well established and validated across a number of case studies. In addition to these steps,
satellite image preprocessing and topographic correction are necessary to homogenize the input
data and minimize the effects of slope and aspect on albedo, respectively.

Although many useful workflows are available for retrieving snow and ice albedo (Bertoncini
et al., 2022; Feng et al., 2023; Mullen et al., 2022; Ren et al., 2024), these workflows are
often designed for specific case studies, have limited modularity and documentation, and
lack function testing. This restricts their applicability in other regions and their long-term
maintainability. SatRbedo addresses these limitations by providing an open-source, extensible,
and well-documented R package for estimating snow and ice albedo from medium-resolution
satellite data.

Implementation
SatRbedo consists of four workflows that run in a processing pipeline (Figure 1).

Figure 1: Flowchart of the SatRbedo package. It includes four workflows: preprocessing, topographic
correction, anisotropic correction, and narrow-to-broadband albedo conversion. The details of the
workflows are described in the text.

• Firstly, the Preprocessing Workflow requires application-ready surface reflectance data
for all available spectral bands (𝜌𝑠), satellite (𝜑𝑣, 𝜃𝑣) and solar (𝜑𝑠, 𝜃𝑠) azimuth and
zenith angles, and an outline of the area of interest (AOI) to carry out the following
preprocessing steps: crop the satellite grids to a specified extent; convert data from
integer to floating point; re-project grids to a common coordinate system; and convert
nadir satellite observations to off-nadir values using view-angle corrections based on the
c-factor method (Roy et al., 2016).

• Subsequently, in the Topographic Correction Workflow, surface reflectance that is not
adjusted for view angle (𝜌𝑇) is corrected for topographic effects to generate equivalent
reflectance values over flat terrain (𝜌𝐻). SatRbedo provides two empirical methods: the
rotation model by Tan et al. (2013) and the C-correction model (Teillet et al., 1982).
These algorithms are appropriate for mountainous environments with rugged topography
and non-Lambertian surface properties, requiring a digital elevation model (DEM) and
solar azimuth and zenith angles as inputs. Both models assume a linear relationship
between reflectance and the solar incidence angle on an inclined surface. Additional
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functions are available to remove topographic shadows (both self- and cast) using the
vectorial algebra algorithms introduced by Corripio (2003).

• The Anisotropic Correction Workflow corrects for the anisotropic reflection properties of
snow and ice. For each surface type, the anisotropic reflection factors (𝑓) are calculated
using empirical Bidirectional Reflectance Distribution Function (BRDF) models that
consider the view-solar geometry relative to the inclined surface, described by slope and
aspect. SatRbedo includes two models: the BRDF models of Koks (2001) for snow and
Greuell & De Ruyter De Wildt (1999) for ice, both used with green and near-infrared
(NIR) bands, and parameterizations from Ren et al. (2021) for combinations of blue,
red, NIR, and shortwave-infrared bands. To distinguish snow from ice, the Normalized
Difference Snow/Ice Index (NDSII, Keshri et al., 2009) is computed from green (𝜌𝑇,𝑔𝑟𝑒𝑒𝑛)
and NIR (𝜌𝑇,𝑁𝐼𝑅) surface reflectance, and surface discrimination is performed using an
automatic threshold selection based on the Otsu algorithm (Otsu, 1979).

• The Narrow-to-broadband albedo conversion Workflow employs empirical BRDF models
to compute narrowband albedo (𝛼𝑛𝑎𝑟𝑟𝑜𝑤𝑏𝑎𝑛𝑑) for each spectral band after topographic
correction (𝜌𝐻). It then derives broadband albedo (𝛼𝑏𝑟𝑜𝑎𝑑𝑏𝑎𝑛𝑑) from these narrowband
values using the empirical relationships proposed by Knap et al. (1999) and Liang (2001).
Furthermore, a function is included that implements a direct approach that does not
require an anisotropy correction and transforms surface reflectance into albedo using the
algorithm from Feng et al. (2023).

Future development
It is expected that active development on SatRbedo will continue in the future through the
incorporation of the newest tools and methods as they become available, as well as through
the active participation of the research community through the software repository platform.
Developments in progress include a kernel-based semiempirical BRDF model and new snow
and snow-free narrow-to-broadband albedo conversion algorithms.
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