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Summary
Spectralmatch provides algorithms to perform relative radiometric normalization (RRN) to
enhance spectral consistency across raster mosaics and time series. It is built for geoscientific
use, with a sensor- and unit-agnostic design, optimized for automation and efficiency on
arbitrarily many images and bands, and works well with Very High Resolution Imagery (VHRI)
as it does not require pixel co-registration. Its current matching algorithms are inspired by
Yu et al. (2017), which include global regression and local block adjustment which minimize
inter-image variability without relying on ancillary data. The impact of these functions on
spectral consistency is illustrated in Figure 1. The software supports cloud and vegetation
masking, pseudo invariant feature (PIF) based exclusion, seamline network generation, raster
merging, and plotting statistics. The toolkit is available as an open-source Python library,
command line interface, and QGIS plugin.

Statement of Need
Remote sensing relies on mosaics to broaden spatial coverage, and on time series to extend
temporal coverage. However, both are affected by inter-image spectral variability, caused by
differences in the atmosphere, illumination, surface condition, acquisition geometry, and other
complications (Theiler et al., 2019). These factors introduce inconsistencies, reduce analytical
accuracy, and complicate the detection of actual environmental changes. To address these
issues, researchers have explored two main correction approaches in the literature: absolute
radiometric correction and RRN, or a combination of both (Hu et al., 2011). The absolute
approach corrects for the aforementioned inaccuracies with algorithms involving atmospheric
correction and bidirectional reflectance distribution functions (Shen et al., 2025), and gains
accuracy from in-situ measurements, which may not exist or be difficult to obtain for specific
images (Canty et al., 2004). Conversely, the relative approach applies algorithms to minimize
apparent spectral differences between images, matching them for consistent analysis, rather
than determining true spectral values or relying on ancillary data.

Researchers have examined various algorithms for performing RRN (Vorovencii & M., 2014),
with model selection and the identification of PIFs recognized as among the most critical and
challenging aspects (Hessel et al., 2020). Most researched RRN methods are not integrated
into software packages, which leaves subsequent researchers either spending significant time
implementing their own versions of the algorithms or relying on the limited available tools. There
are commercial software programs that implement RRN which include ArcGIS Pro (dodging,
global fit, histogram, and standard deviation), ENVI (histogram matching), ERDAS IMAGINE
Mosaic Pro (illumination equalizing, dodging, color balancing, and histogram matching) and
others. In addition, open source solutions include QGIS (histogram matching and Iteratively
Reweighted Multivariate Alteration Detection (IR-MAD)), MATLAB scripts (pixel similarity
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grouping by Moghimi et al. (2024)), Python scripts (multi-sensor normalization by Hessel
et al. (2020)) and the R ‘landsat’ library (histogram matching, pixel-wise linear regression,
K-T ratio, and urban materials ratio) by Goslee (2011). While existing solutions cover many
use cases, there is not an open source, scalable library to match non-coregistered VHRI using
the mean-standard deviation method which this library specifically addresses. In addition, this
library provides an extensible structure to add new RRN methods to meet researchers’ varying
needs and dataset requirements.

Implemented RRN Methods
The current matching algorithm uses a two-step approach involving global regression and local
block adjustment following the methods of Yu et al. (2017). The approach is suitable to
match imagery from the same sensor or from multiple sensors with comparable wavelengths
and resolution—for example, between satellites (Sentinel-PlanetScope) or between drones
(Zenmuse P1-Mavic 3 Multispectral). The global regression algorithm adjusts brightness and
contrast across overlapping images to reduce spectral differences. It first detects overlapping
image pairs and computes per-band statistics (mean and standard deviation) within those
regions. Using these statistics, a least-squares regression system is constructed to solve for
per-image, per-band scale and offset parameters that minimize radiometric differences in
overlapping areas. This approach aims to minimize brightness and contrast differences across
images while preserving global consistency and aligning the spectral profiles of images to a
central tendency, specific image, or set of images via custom-weighted mean and standard
deviation constraints.

The local block adjustment algorithm applies block-wise radiometric correction to individual
satellite images based on local differences from a reference mosaic. The method divides the
combined extent of all input images into spatial blocks and calculates local mean statistics
for each block. Each image is then locally adjusted using interpolated adaptive gamma
normalization to align with the global reference mosaic. This allows radiometric consistency
across spatially heterogeneous scenes on a block scale. Both global and local algorithms
support nodata-aware processing for images of irregular shapes and internal gaps and vector
PIF masking applied at the matching solution stage. For large datasets, the library supports
cloud optimized geotiff outputs, saving and loading of intermediate steps, and efficient
windowing and parallelization. For example, on a computer with 16GB of memory and 10 M1
cores, multiprocessing increased processing speed by up to 43%, with larger images showing
larger increases.

Various helper functions support the creation of cloud masks, non-vegetation PIFs, generating
seamline networks, merging images, and basic figures. Cloud masking utilities enable the
generation of binary masks using OmniCloudMask by Wright et al. (2025), followed by post-
processing and vectorization. Vegetation masking utilities use NDVI-based thresholds, followed
by post-processing and vectorization. The created masks can be used to mask input images
or withhold pixels from analysis. Seamline generation utilities use Voronoi-based centerlines,
following the methodology of Yuan et al. (2023). Statistical utilities can generate basic figures
comparing image spectral profiles before and after matching to evaluate radiometric changes.
Raster merging utilities combine the final images into a seamless mosaic.
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Figures

Figure 1: Comparison of three WorldView-3 images from Puʻu Waʻawaʻa, Hawaiʻi before and after
processing with global regression and local block adjustment using spectralmatch. The top left shows
images before processing, the middle left shows images after processing, the bottom left shows images
mosaicked before and after processing, and lastly, the right shows the averaged spectral profiles from the
overlapping area of all images.
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