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Abstract

xr_fresh is a Python library for automated feature extraction from gridded time series
data, such as satellite imagery, climate model outputs, and sensor arrays. Building on the
methodology of tsfresh, xr_fresh extends this approach to pixel-level temporal sequences
common in observational data such as from earth observation or repeat photography data.
It computes a comprehensive set of statistical, trend, and distribution-based features for
each pixel, enabling scalable preprocessing for classical machine learning. The library is
optimized for large-scale applications through parallelized computation using xarray, Dask,
Ray, and JAX. It also includes advanced interpolation techniques for handling missing data
and GPU-accelerated kernel PCA for dimensionality reduction.DOI: 10.21105/joss.09009
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Statement of need
Gridded time series data from satellites, climate models, camera feeds, and sensors contain rich
temporal information for applications like crop type classification and yields, anomaly detection,
robotics, quality control, environmental monitoring, and natural resource management (Delince
et al., 2017; Hufkens et al., 2019; Michael L. Mann et al., 2019; Michael L. Mann & Warner,
2017; Mumuni & Mumuni, 2024). Efficiently extracting relevant time series features at scale
remains challenging, necessitating automation (Faouzi, 2022; Li et al., 2020). Inspired by
tsfresh, we introduce xr_fresh, tailored specifically for gridded time series by automating
the extraction of time series features on a pixel-by-pixel basis (Christ et al., 2018).

Currently, there is no method to rapidly extract a comprehensive set of features from gridded
time series data, such as those derived from remote sensing imagery. Existing packages like
tsfresh are not optimized for the unique structure of gridded time series data and take 160
times longer to process. This limitation hinders the ability to efficiently analyze and model
these datasets, particularly in the context of remote sensing applications where large volumes
of data are generated.

To address this gap, xr_fresh automates the extraction of salient temporal and statistical
features from each pixel time series. Using automated feature extraction, xr_fresh reduces
manual intervention and improves reproducibility in remote sensing workflows.

Problems and Background
An image time series can be represented as a three-dimensional array with spatial dimensions
𝑥 and 𝑦, and temporal dimension 𝑧. Each pixel at location (𝑥𝑖, 𝑦𝑗) holds a time series:

𝒟 = {𝑋𝑖,𝑗 ∈ ℝ𝑇 ∣ 𝑖 = 1,… ,𝐻; 𝑗 = 1,… ,𝑊}

where 𝐻 and 𝑊 are the height and width of the image, and 𝑇 is the number of temporal
observations (e.g. monthly composites or daily acquisitions).

To prepare these data for use in supervised or unsupervised machine learning, each pixel time
series 𝑋𝑖,𝑗 = (𝑥𝑖,𝑗,1, 𝑥𝑖,𝑗,2,… , 𝑥𝑖,𝑗,𝑇) is transformed into a feature vector:
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⃗𝑥𝑖,𝑗 = (𝑓1(𝑋𝑖,𝑗), 𝑓2(𝑋𝑖,𝑗),… , 𝑓𝑀(𝑋𝑖,𝑗))

where each 𝑓𝑚 is a time series feature extraction function (e.g. mean, variance, trend,
autocorrelation), and 𝑀 is the total number of extracted features.

A visual representation of this transformation is shown in Figure 1.

Figure 1: Feature Extraction Process

This results in a 2D design matrix of features for the entire image:

Xfeatures ∈ ℝ𝐻×𝑊×𝑀

This transformation effectively reduces the temporal complexity while preserving informative
temporal patterns, enabling efficient training of models or aggregation to coarser units (e.g.,
fields or regions).

Additional static features (e.g., soil type, elevation), can be concatenated:

⃗𝑥final
𝑖,𝑗 = [ ⃗𝑥𝑖,𝑗 | ⃗𝑎𝑖,𝑗] ∈ ℝ𝑀+𝑈

where ⃗𝑎𝑖,𝑗 ∈ ℝ𝑈 represents the 𝑈 univariate attributes at pixel (𝑖, 𝑗).

Time Series Feature Set

The documentation summarizes the suite of time series features extracted by the xr_fresh

module from gridded data. These features are designed to characterize the temporal behavior
of each pixel (𝑥𝑖, 𝑦𝑗). By including a diverse set of statistical, trend and distribution-based
metrics, xr_fresh enables a detailed and scalable analysis of temporal patterns (Jin et al.,
2022; Venkatachalam et al., 2024). Additional features can be added to the library as needed,
and users can also define custom feature extraction functions.

Interpolation

The xr_fresh library includes functionality to interpolate missing values pixel-wise in gridded
data. The interpolation methods implemented in xr_fresh are designed to be computationally
efficient and can handle large datasets effectively. The module supports advanced interpolation
techniques including linear, nearest-neighbor, cubic, and univariate spline interpolation (Virtanen
et al., 2020).

Formally, for a fixed pixel (𝑖, 𝑗), let the time series be:
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𝑋𝑖,𝑗 = (𝑥𝑖,𝑗,1, 𝑥𝑖,𝑗,2,… , 𝑥𝑖,𝑗,𝑇)

where some 𝑥𝑖,𝑗,𝑡 may be missing due to clouds or sensor gaps. The interpolation estimates
these missing values by fitting a function 𝑓(𝑡) to the observed time steps {𝑡𝑘 ∈ [1, 𝑇 ] ∣
𝑥𝑖,𝑗,𝑡𝑘 is observed}. The interpolated value at time 𝑡 is:

𝑥𝑖,𝑗,𝑡 = 𝑓(𝑡), for 𝑥𝑖,𝑗,𝑡 missing

The function 𝑓(𝑡) may take the form of: 1) linear interpolation, 2) nearest neighbor, 3) cubic
spline interpolation, or 4) univariate spline interpolation. If acquisition times are irregular, the
time 𝑡 is replaced by a datetime indexes.

Dimensionality Reduction

For high-dimensional inputs or when the number of bands/time steps is large, dimensionality
reduction can improve model performance. xr_fresh integrates a GPU/CPU-parallelized
Kernel Principal Component Analysis (KPCA) module (Pedregosa et al., 2011). The KPCA
implementation samples valid observations for training, fits the kernel model, and projects
each pixel’s time series into a lower-dimensional space.

Software Framework
xr_fresh achieves scalability by employing a combination of parallel and distributed computing
strategies. During feature extraction, functions are applied in parallel across spatial windows
with Dask and xarray, which provide lazy evaluation, chunked computation (Graesser & Mann,
2025; Hoyer & Hamman, 2017; Rocklin, 2015). Seamlessly integrated into the parallel pipeline
and can leverage accelerated libraries like JAX, NumPy, ray, numba or PyTorch for additional
speedup (Bradbury et al., 2018; Harris et al., 2020; Lam et al., 2015; Moritz et al., 2018).
Together, these strategies ensure that methods are highly scalable, for use on large-scale
datasets.

Example: Precipitation In Africa
We apply xr_fresh methods to a dataset of monthly precipitation estimates in Africa (Figure
2) (Funk et al., 2015). The goal is to extract features from the time series data, enabling
subsequent analysis and modeling. The extract_features_series function takes a list of
files, a dictionary of desired features.
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Figure 2: Precipitation input data

# create list of desired series and arguments

feature_list = {

"minimum": [{}],

"abs_energy": [{}],

"doy_of_maximum": [{"dates": dates}],

"mean_abs_change": [{}],

"ratio_beyond_r_sigma": [{"r": 1}, {"r": 2}],

"symmetry_looking": [{}],

"sum": [{}],

"quantile": [{"q": 0.05}, {"q": 0.95}],

}

from xr_fresh.extractors_series import extract_features_series

# Extract features from the geospatial time series

extract_features_series(image_list, feature_list, band_name, out_dir,

num_workers=12, nodata=-9999)
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Figure 3: Time series feature set

The extracted features found in Figure 3 can then be used in a variety of applications.

Conclusions
xr_fresh is a powerful and efficient tool for automated feature extraction from gridded time
series. Using advanced statistical methods and parallel computing, it enables the extraction of
a comprehensive set of features that can significantly enhance the performance of machine
learning models. Integration with existing Python geospatial libraries ensures that xr_fresh

is easy to use and can be seamlessly incorporated into existing machine learning workflows.
It also provides advanced interpolation and dimensionality reduction capabilities, addressing
common challenges in remote sensing data analysis.
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