
xr_fresh: Automated Time Series Feature Extraction
for Remote Sensing and Gridded Data
Michael L. Mann 1

1 The George Washington University, Department of Geography & Environment, Washington DC 20052

Abstract

xr_fresh is a Python library for automated feature extraction from gridded time series
data, such as satellite imagery, climate model outputs, and sensor arrays. Building on the
methodology of tsfresh, xr_fresh extends this approach to pixel-level temporal sequences
common in observational data such as from earth observation or repeat photography data.
It computes a comprehensive set of statistical, trend, and distribution-based features for
each pixel, enabling scalable preprocessing for classical machine learning. The library is
optimized for large-scale applications through parallelized computation using xarray, Dask,
Ray, and JAX. It also includes advanced interpolation techniques for handling missing data
and GPU-accelerated kernel PCA for dimensionality reduction.DOI: 10.21105/joss.09009

Software
• Review
• Repository
• Archive

Editor: Monica Bobra
Reviewers:

• @chenyangkang
• @nvnsudharsan

Submitted: 21 May 2025
Published: 03 November 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Statement of need
Gridded time series data from satellites, climate models, camera feeds, and sensors contain rich
temporal information for applications like crop type classification and yields, anomaly detection,
robotics, quality control, environmental monitoring, and natural resource management (Delince
et al., 2017; Hufkens et al., 2019; Michael L. Mann et al., 2019; Michael L. Mann & Warner,
2017; Mumuni & Mumuni, 2024). Efficiently extracting relevant time series features at scale
remains challenging, necessitating automation (Faouzi, 2022; Li et al., 2020). Inspired by
tsfresh, we introduce xr_fresh, tailored specifically for gridded time series by automating
the extraction of time series features on a pixel-by-pixel basis (Christ et al., 2018).

Currently, there is no method to rapidly extract a comprehensive set of features from gridded
time series data, such as those derived from remote sensing imagery. Existing packages like
tsfresh are not optimized for the unique structure of gridded time series data and take 160
times longer to process. This limitation hinders the ability to efficiently analyze and model
these datasets, particularly in the context of remote sensing applications where large volumes
of data are generated.

To address this gap, xr_fresh automates the extraction of salient temporal and statistical
features from each pixel time series. Using automated feature extraction, xr_fresh reduces
manual intervention and improves reproducibility in remote sensing workflows.

Problems and Background
An image time series can be represented as a three-dimensional array with spatial dimensions
𝑥 and 𝑦, and temporal dimension 𝑧. Each pixel at location (𝑥𝑖, 𝑦𝑗) holds a time series:

𝒟 = {𝑋𝑖,𝑗 ∈ ℝ𝑇 ∣ 𝑖 = 1,… ,𝐻; 𝑗 = 1,… ,𝑊}

where 𝐻 and 𝑊 are the height and width of the image, and 𝑇 is the number of temporal
observations (e.g. monthly composites or daily acquisitions).

To prepare these data for use in supervised or unsupervised machine learning, each pixel time
series 𝑋𝑖,𝑗 = (𝑥𝑖,𝑗,1, 𝑥𝑖,𝑗,2,… , 𝑥𝑖,𝑗,𝑇) is transformed into a feature vector:

Mann. (2025). xr_fresh: Automated Time Series Feature Extraction for Remote Sensing and Gridded Data. Journal of Open Source Software,
10(115), 9009. https://doi.org/10.21105/joss.09009.

1

https://orcid.org/0000-0002-6268-6867
https://doi.org/10.21105/joss.09009
https://github.com/openjournals/joss-reviews/issues/9009
https://github.com/mmann1123/xr_fresh
https://doi.org/10.5281/zenodo.17401251
https://mbobra.github.io
https://orcid.org/0000-0002-5662-9604
https://github.com/chenyangkang
https://github.com/nvnsudharsan
https://creativecommons.org/licenses/by/4.0/
https://github.com/mmann1123/xr_fresh/blob/master/notebooks/time_trial.ipynb
https://github.com/mmann1123/xr_fresh/blob/master/notebooks/time_trial.ipynb
https://doi.org/10.21105/joss.09009

⃗𝑥𝑖,𝑗 = (𝑓1(𝑋𝑖,𝑗), 𝑓2(𝑋𝑖,𝑗),… , 𝑓𝑀(𝑋𝑖,𝑗))

where each 𝑓𝑚 is a time series feature extraction function (e.g. mean, variance, trend,
autocorrelation), and 𝑀 is the total number of extracted features.

A visual representation of this transformation is shown in Figure 1.

Figure 1: Feature Extraction Process

This results in a 2D design matrix of features for the entire image:

Xfeatures ∈ ℝ𝐻×𝑊×𝑀

This transformation effectively reduces the temporal complexity while preserving informative
temporal patterns, enabling efficient training of models or aggregation to coarser units (e.g.,
fields or regions).

Additional static features (e.g., soil type, elevation), can be concatenated:

⃗𝑥final
𝑖,𝑗 = [⃗𝑥𝑖,𝑗 | ⃗𝑎𝑖,𝑗] ∈ ℝ𝑀+𝑈

where ⃗𝑎𝑖,𝑗 ∈ ℝ𝑈 represents the 𝑈 univariate attributes at pixel (𝑖, 𝑗).

Time Series Feature Set

The documentation summarizes the suite of time series features extracted by the xr_fresh

module from gridded data. These features are designed to characterize the temporal behavior
of each pixel (𝑥𝑖, 𝑦𝑗). By including a diverse set of statistical, trend and distribution-based
metrics, xr_fresh enables a detailed and scalable analysis of temporal patterns (Jin et al.,
2022; Venkatachalam et al., 2024). Additional features can be added to the library as needed,
and users can also define custom feature extraction functions.

Interpolation

The xr_fresh library includes functionality to interpolate missing values pixel-wise in gridded
data. The interpolation methods implemented in xr_fresh are designed to be computationally
efficient and can handle large datasets effectively. The module supports advanced interpolation
techniques including linear, nearest-neighbor, cubic, and univariate spline interpolation (Virtanen
et al., 2020).

Formally, for a fixed pixel (𝑖, 𝑗), let the time series be:

Mann. (2025). xr_fresh: Automated Time Series Feature Extraction for Remote Sensing and Gridded Data. Journal of Open Source Software,
10(115), 9009. https://doi.org/10.21105/joss.09009.

2

https://mmann1123.github.io/xr_fresh/feature_calculator_series.html
https://doi.org/10.21105/joss.09009

𝑋𝑖,𝑗 = (𝑥𝑖,𝑗,1, 𝑥𝑖,𝑗,2,… , 𝑥𝑖,𝑗,𝑇)

where some 𝑥𝑖,𝑗,𝑡 may be missing due to clouds or sensor gaps. The interpolation estimates
these missing values by fitting a function 𝑓(𝑡) to the observed time steps {𝑡𝑘 ∈ [1, 𝑇] ∣
𝑥𝑖,𝑗,𝑡𝑘 is observed}. The interpolated value at time 𝑡 is:

𝑥𝑖,𝑗,𝑡 = 𝑓(𝑡), for 𝑥𝑖,𝑗,𝑡 missing

The function 𝑓(𝑡) may take the form of: 1) linear interpolation, 2) nearest neighbor, 3) cubic
spline interpolation, or 4) univariate spline interpolation. If acquisition times are irregular, the
time 𝑡 is replaced by a datetime indexes.

Dimensionality Reduction

For high-dimensional inputs or when the number of bands/time steps is large, dimensionality
reduction can improve model performance. xr_fresh integrates a GPU/CPU-parallelized
Kernel Principal Component Analysis (KPCA) module (Pedregosa et al., 2011). The KPCA
implementation samples valid observations for training, fits the kernel model, and projects
each pixel’s time series into a lower-dimensional space.

Software Framework
xr_fresh achieves scalability by employing a combination of parallel and distributed computing
strategies. During feature extraction, functions are applied in parallel across spatial windows
with Dask and xarray, which provide lazy evaluation, chunked computation (Graesser & Mann,
2025; Hoyer & Hamman, 2017; Rocklin, 2015). Seamlessly integrated into the parallel pipeline
and can leverage accelerated libraries like JAX, NumPy, ray, numba or PyTorch for additional
speedup (Bradbury et al., 2018; Harris et al., 2020; Lam et al., 2015; Moritz et al., 2018).
Together, these strategies ensure that methods are highly scalable, for use on large-scale
datasets.

Example: Precipitation In Africa
We apply xr_fresh methods to a dataset of monthly precipitation estimates in Africa (Figure
2) (Funk et al., 2015). The goal is to extract features from the time series data, enabling
subsequent analysis and modeling. The extract_features_series function takes a list of
files, a dictionary of desired features.

Mann. (2025). xr_fresh: Automated Time Series Feature Extraction for Remote Sensing and Gridded Data. Journal of Open Source Software,
10(115), 9009. https://doi.org/10.21105/joss.09009.

3

https://doi.org/10.21105/joss.09009

Figure 2: Precipitation input data

create list of desired series and arguments

feature_list = {

"minimum": [{}],

"abs_energy": [{}],

"doy_of_maximum": [{"dates": dates}],

"mean_abs_change": [{}],

"ratio_beyond_r_sigma": [{"r": 1}, {"r": 2}],

"symmetry_looking": [{}],

"sum": [{}],

"quantile": [{"q": 0.05}, {"q": 0.95}],

}

from xr_fresh.extractors_series import extract_features_series

Extract features from the geospatial time series

extract_features_series(image_list, feature_list, band_name, out_dir,

num_workers=12, nodata=-9999)

Mann. (2025). xr_fresh: Automated Time Series Feature Extraction for Remote Sensing and Gridded Data. Journal of Open Source Software,
10(115), 9009. https://doi.org/10.21105/joss.09009.

4

https://doi.org/10.21105/joss.09009

Figure 3: Time series feature set

The extracted features found in Figure 3 can then be used in a variety of applications.

Conclusions
xr_fresh is a powerful and efficient tool for automated feature extraction from gridded time
series. Using advanced statistical methods and parallel computing, it enables the extraction of
a comprehensive set of features that can significantly enhance the performance of machine
learning models. Integration with existing Python geospatial libraries ensures that xr_fresh

is easy to use and can be seamlessly incorporated into existing machine learning workflows.
It also provides advanced interpolation and dimensionality reduction capabilities, addressing
common challenges in remote sensing data analysis.

Mann. (2025). xr_fresh: Automated Time Series Feature Extraction for Remote Sensing and Gridded Data. Journal of Open Source Software,
10(115), 9009. https://doi.org/10.21105/joss.09009.

5

https://doi.org/10.21105/joss.09009

References
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,

Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.3.13). http://github.com/jax-ml/
jax

Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A. W. (2018). Time series FeatuRe
extraction on basis of scalable hypothesis tests (tsfresh a Python package). Neurocomputing,
307, 72–77. https://doi.org/10.1016/j.neucom.2018.03.067

Delince, J., Lemoine, G., Defourny, P., Gallego, J., Davidson, A., Ray, S., Rojas, O., Latham,
J., & Achard, F. (2017). Handbook on remote sensing for agricultural statistics. GSARS:
Rome, Italy. https://doi.org/10.13140/RG.2.2.13259.69920

Faouzi, J. (2022). Time series classification: A review of algorithms and implementations. Ma-
chine Learning (Emerging Trends and Applications). https://doi.org/10.5772/intechopen.
1004810

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland,
J., Harrison, L., Hoell, A., & others. (2015). The climate hazards infrared precipitation
with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1),
1–21. https://doi.org/10.1038/sdata.2015.66

Graesser, J., & Mann, M. (2025). GeoWombat (v2.1.22): Utilities for geospatial data. Zenodo.
https://doi.org/10.5281/zenodo.15483823

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk, M.
H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant, T.
E. (2020). Array programming with NumPy. Nature, 585, 357–362. https://doi.org/10.
1038/s41586-020-2649-2

Hoyer, S., & Hamman, J. (2017). Xarray: N-D labeled arrays and datasets in Python. J. Open
Res. Software. https://doi.org/10.5334/jors.148

Hufkens, K., Melaas, E. K., Mann, M. L., Foster, T., Ceballos, F., Robles, M., & Kramer, B.
(2019). Monitoring crop phenology using a smartphone based near-surface remote sensing
approach. Agricultural and Forest Meteorology, 265, 327–337. https://doi.org/10.1016/j.
agrformet.2018.11.002

Jin, G., Li, F., Zhang, J., Wang, M., & Huang, J. (2022). Automated dilated spatio-
temporal synchronous graph modeling for traffic prediction. IEEE Transactions on Intelligent
Transportation Systems, 24(8), 8820–8830. https://doi.org/10.1109/TITS.2022.3195232

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based python JIT compiler.
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC.
https://doi.org/10.1145/2833157.2833162

Li, X., Kang, Y., & Li, F. (2020). Forecasting with time series imaging. Expert Systems with
Applications, 160, 113680. https://doi.org/10.1016/j.eswa.2020.113680

Mann, Michael L., & Warner, J. M. (2017). Ethiopian wheat yield and yield gap estimation:
A spatially explicit small area integrated data approach. Field Crops Research, 201, 60–74.
https://doi.org/10.1016/j.fcr.2016.10.014

Mann, Michael L., Warner, J. M., & Malik, A. S. (2019). Predicting high-magnitude, low-
frequency crop losses using machine learning: An application to cereal crops in Ethiopia.
Climatic Change, 154(1), 211–227. https://doi.org/10.1007/s10584-019-02432-7

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z.,
Paul, W., Jordan, M. I., & Stoica, I. (2018). Ray: A distributed framework for emerging AI

Mann. (2025). xr_fresh: Automated Time Series Feature Extraction for Remote Sensing and Gridded Data. Journal of Open Source Software,
10(115), 9009. https://doi.org/10.21105/joss.09009.

6

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.13140/RG.2.2.13259.69920
https://doi.org/10.5772/intechopen.1004810
https://doi.org/10.5772/intechopen.1004810
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.5281/zenodo.15483823
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5334/jors.148
https://doi.org/10.1016/j.agrformet.2018.11.002
https://doi.org/10.1016/j.agrformet.2018.11.002
https://doi.org/10.1109/TITS.2022.3195232
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1016/j.eswa.2020.113680
https://doi.org/10.1016/j.fcr.2016.10.014
https://doi.org/10.1007/s10584-019-02432-7
https://doi.org/10.21105/joss.09009

applications. 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), 561–577. https://doi.org/10.48550/arXiv.1712.05889

Mumuni, A., & Mumuni, F. (2024). Automated data processing and feature engineering for
deep learning and big data applications: A survey. Journal of Information and Intelligence.
https://doi.org/10.1016/j.jiixd.2024.01.002

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12, 2825–2830. https://dl.acm.org/doi/10.5555/
1953048.2078195

Rocklin, M. (2015). Dask: Parallel computation with blocked algorithms and task scheduling.
Proceedings of the 14th Python in Science Conference, 130–136. https://doi.org/10.
25080/Majora-7b98e3ed-013

Venkatachalam, S., Kacha, D., Sheth, D., Mann, M., & Jafari, A. (2024). Temporal patterns
and pixel precision: Satellite-based crop classification using deep learning and machine
learning. George Washington University, Department of Geography & Environment; Data
Science Program.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., & others. (2020). SciPy 1.0:
Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3),
261–272. https://doi.org/10.1038/s41592-019-0686-2

Mann. (2025). xr_fresh: Automated Time Series Feature Extraction for Remote Sensing and Gridded Data. Journal of Open Source Software,
10(115), 9009. https://doi.org/10.21105/joss.09009.

7

https://doi.org/10.48550/arXiv.1712.05889
https://doi.org/10.1016/j.jiixd.2024.01.002
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.09009

	Statement of need
	Problems and Background
	Time Series Feature Set
	Interpolation
	Dimensionality Reduction

	Software Framework
	Example: Precipitation In Africa
	Conclusions
	References

