
pythainer: composable and reusable Docker builders
and runners for reproducible research
Antonio Paolillo 1

1 Software Languages Lab, Vrije Universiteit Brussel (VUB), Belgium
DOI: 10.21105/joss.09059

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @samfrm
• @akshaymittal143
• @rcannood

Submitted: 16 September 2025
Published: 09 January 2026

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Software experiments today often depend on complex Linux environments that combine several
toolchains, devices, and graphical interfaces. Many research projects (Mayoral-Vilches et al.,
2022; Millane et al., 2024), for instance, need to compose ROS 2 (Macenski et al., 2022)
with CUDA (CUDA C++ Programming Guide, 2025), require non-root users, provide GPU
and GUI access, and must be reproducible across time and machines. Docker (Docker, Inc.,
2013) is a widely adopted substrate for packaging and running such environments, and is
commonly used to improve reproducibility in research software (Tani et al., 2020). However,
writing and maintaining Dockerfiles and project-specific docker run scripts becomes a burden
as requirements grow.

pythainer raises the level of abstraction while remaining Docker-native. It lets users describe
images as small, testable Python builders that can be composed (e.g., ROS 2 + CUDA)
and executed with reusable runners that capture runtime policy (GPU, GUI, users, mounts).
pythainer renders deterministic Dockerfiles, builds standard images, and centralizes run
configuration, hence improving reuse and reducing duplication across repositories.

Statement of need
Plain Dockerfiles are intentionally minimal: they offer sequential shell steps but no first-class
functions, loops, or composition. This is adequate for simple images, yet it complicates reuse
in research settings where environments must be combined and parameterized. In particular,
merging two existing images (e.g., community ROS 2 and NVIDIA CUDA) is not first-class:
multi-stage builds help trim artifacts but require intimate knowledge of which files, environment
variables, and paths must be copied and preserved. On the runtime side, real projects often
need non-root users, persistent volumes, access to GPUs and GUIs (X11/Wayland), and device
mappings. These concerns are typically maintained as long shell scripts that are copy-pasted
and diverge across projects.

The primary target audience of pythainer is anyone who needs to write and maintain multiple
Dockerfiles or complex containerized environments that share interchangeable build steps and
runtime requirements. This includes, but is not limited to, research groups and labs (e.g.,
robotics, vision, ML, compilers, systems), instructors who need reliable student environments,
and continuous integration (CI) maintainers who prefer deterministic builds and centralized
run policy over ad-hoc scripts.

Functionality
pythainer is a lightweight Python package and CLI that provides a programmable front-end
to Docker. It addresses the above pain points by adding a programmable abstraction for image

Paolillo. (2026). pythainer: composable and reusable Docker builders and runners for reproducible research. Journal of Open Source Software,
11(117), 9059. https://doi.org/10.21105/joss.09059.

1

https://orcid.org/0000-0001-6608-6562
https://ror.org/006e5kg04
https://doi.org/10.21105/joss.09059
https://github.com/openjournals/joss-reviews/issues/9059
https://github.com/apaolillo/pythainer
https://doi.org/10.5281/zenodo.18189906
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/samfrm
https://github.com/akshaymittal143
https://github.com/rcannood
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.09059


construction and a reusable abstraction for execution policy. Builders are Python objects and
functions that support ordinary programming constructs (conditionals, loops, parameters) and
can be composed with a simple operator. Runners encapsulate repeatable docker run policy,
so launching a container is a matter of selecting presets rather than rewriting long commands.

Instead of writing raw Dockerfiles and shell scripts, users compose images with builders and
control runtime behavior with runners. The library integrates naturally into Python workflows
while emitting standard, human-readable Dockerfiles that are built and executed using the
Docker engine with reproducible runtime settings. pythainer is centered around two core
abstractions, builders and runners:

• Builders (image construction). A small API exposes common steps (e.g.,
FROM/RUN/ENV/WORKDIR, package installs). Builders can be composed
via an in-place operator to form larger images (e.g., ROS 2 + CUDA). Output rendering
is deterministic, which simplifies testing and review.

• Runners (execution policy). A runner object assembles docker run flags for typical
research needs: non-root user mapping, volumes, devices, GPUs, and GUI/X11 for-
warding. Presets capture best practices (e.g., mapping the X socket and DISPLAY,
requesting --gpus all with the expected environment variables), reducing duplication
across repositories.

pythainer is designed around composable building blocks: users can define their own builders
or runners and combine them across projects. The library also ships a small set of representative
builders and runners for common research needs (e.g., language toolchains, emulation, GPU
and GUI support), which can be reused directly or extended in project-specific workflows. This
enables reuse that is difficult to achieve with monolithic Dockerfiles.

Figure 1: Mapping between a pythainer builder recipe (left) and the resulting Dockerfile (right). Each
builder method contributes a deterministic Dockerfile block. Execution policy is defined separately via
runners (e.g., GUI/X11 support), which assemble the docker run invocation without modifying the image.

Figure 1 illustrates the core workflow of pythainer. Users specify image construction declaratively
in Python using builders, which are rendered into a standard Dockerfile and built with the
Docker engine. Execution policy is handled separately via runners, which assemble the required
docker run flags before launching the container.

pythainer is accompanied by supporting tooling:

• CLI. A command-line interface provides two convenience commands: scaffold generates
a starter Python script (builders + runners) and run composes and executes directly for
one-offs.

• Examples and tests. The package ships small composition recipes (e.g., LLVM/MLIR,

Paolillo. (2026). pythainer: composable and reusable Docker builders and runners for reproducible research. Journal of Open Source Software,
11(117), 9059. https://doi.org/10.21105/joss.09059.

2

https://doi.org/10.21105/joss.09059


QEMU, Rust) (Chris Lattner et al., 2021; C. Lattner & Adve, 2004; QEMU Project,
2003). Unit tests lock down Dockerfile rendering and CLI behavior; an opt-in integration
test builds a tiny image to validate the end-to-end flow. Continuous integration runs
tests and linters.

Research applications
We have used pythainer to assemble environments for (i) robotics experiments combining
ROS 2 with CUDA toolchains (Imec ITF World 2024 SAFEBOT Demo, 2024; Shen et al.,
2025); (ii) compiler research that requires pinned LLVM toolchains (De Greef et al., 2025);
(iii) systems evaluations using QEMU built from source; and (iv) GPU scheduling experiments
where deterministic containerized environments are required (Discepoli et al., 2025).

In each case, the same small recipes are reused and composed across projects, which shortens
setup time and reduces configuration drift. Because pythainer emits human-readable Docker-
files, the resulting images remain transparent and easy to audit, and the approach integrates
well with existing Docker-centric CI.

Related work
pythainer complements the Docker ecosystem by adding a programmable composition model
on top of Dockerfiles. Unlike Docker Compose or the Docker SDK for Python, which focus on
orchestrating multi-service deployments or driving the daemon (Docker, Inc., 2014a, 2014b),
pythainer focuses on single-image construction and single-container execution policy. This
makes it especially suited for research projects where the goal is to provide a single reproducible
environment for experiments rather than a full service-oriented stack.

Compared with editor-centric templates such as VS Code devcontainers (Dev Containers Spec,
2022) or domain-specific generators such as repo2docker (Project Jupyter, 2017), pythainer
treats environment recipes as code with tests and deterministic rendering. Functional package
managers such as Nix and Guix offer deep system-level reproducibility but require adopting a
different stack (Courtès, 2013; Dolstra et al., 2004); pythainer stays Docker-native for easier
adoption in labs and CI. Pragmatically, many third-party packages (e.g., CUDA and ROS 2)
are primarily supported on Ubuntu, so staying Docker-native with Ubuntu-based images eases
reproduction without changing the base distribution.

Projects such as Caliban (Ritchie et al., 2020) and x11docker (Viereck, 2019) address re-
lated pain points in research containerization. Caliban streamlines packaging and running
ML experiments across local and cloud environments, while x11docker provides secure and
convenient ways to run GUI applications inside Docker. However, neither of these works
addresses general-purpose composition of images and runtime policy. In contrast, pythainer
focuses on composable image construction and reusable execution policy while remaining
domain-agnostic and Docker-native.

Acknowledgements
We thank contributors for feedback and patches that improved early designs and examples,
including Attilio Discepoli, Yuwen Shen, Aaron Bogaert, Samuel Beesoon, Robbe De Greef,
and Esteban Aguililla Klein.

References
Courtès, L. (2013). Functional package management with Guix. https://arxiv.org/abs/1305.

4584

Paolillo. (2026). pythainer: composable and reusable Docker builders and runners for reproducible research. Journal of Open Source Software,
11(117), 9059. https://doi.org/10.21105/joss.09059.

3

https://arxiv.org/abs/1305.4584
https://arxiv.org/abs/1305.4584
https://doi.org/10.21105/joss.09059


CUDA C++ programming guide. (2025). [Computer software]. NVIDIA Corporation;
https://docs.nvidia.com/cuda/cuda-c-programming-guide/, accessed 2025-09-15.

De Greef, R., Discepoli, A., Aguililla Klein, E., Engels, T., Hasselmann, K., & Paolillo, A.
(2025). Towards macro-aware C-to-Rust transpilation (WIP). Proceedings of the 26th
ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for
Embedded Systems, 57–61. https://doi.org/10.1145/3735452.3735535

Dev Containers Spec. (2022). Development containers specification. https://containers.dev
accessed 2025-09-15.

Discepoli, A., Huygen, M. L., & Paolillo, A. (2025). Compute kernels as moldable tasks:
Towards real‑time gang scheduling in GPUs. Proceedings of the 19th Workshop on
Operating Systems Platforms for Embedded Real‑time Applications (OSPERT 2025),
29–33.

Docker, Inc. (2013). Docker: Accelerated container application development. https://www.
docker.com/ accessed 2025-09-15.

Docker, Inc. (2014a). Docker compose. https://docs.docker.com/compose/ accessed 2025-
09-15.

Docker, Inc. (2014b). Docker SDK for python. https://docker-py.readthedocs.io/ accessed
2025-09-15.

Dolstra, E., Jonge, M. de, & Visser, E. (2004). Nix: A safe and policy-free system for software
deployment. Proceedings of the 18th USENIX Conference on System Administration,
79–92.

Imec ITF world 2024 SAFEBOT demo. (2024). https://www.youtube.com/watch?v=F7m5_
kQ_mRQ accessed 2025-09-15.

Lattner, C., & Adve, V. (2004). LLVM: A compilation framework for lifelong program analysis
& transformation. International Symposium on Code Generation and Optimization, 2004.
CGO 2004., 75–86. https://doi.org/10.1109/CGO.2004.1281665

Lattner, Chris, Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., Riddle, R.,
Shpeisman, T., Vasilache, N., & Zinenko, O. (2021). MLIR: Scaling compiler infrastructure
for domain specific computation. 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2–14. https://doi.org/10.1109/CGO51591.2021.
9370308

Macenski, S., Foote, T., Gerkey, B., Lalancette, C., & Woodall, W. (2022). Robot operating
system 2: Design, architecture, and uses in the wild. Science Robotics, 7 (66), eabm6074.
https://doi.org/10.1126/scirobotics.abm6074

Mayoral-Vilches, V., Neuman, S. M., Plancher, B., & Reddi, V. J. (2022). RobotCore: An
open architecture for hardware acceleration in ROS 2. 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 9692–9699. https://doi.org/10.
1109/IROS47612.2022.9982082

Millane, A., Oleynikova, H., Wirbel, E., Steiner, R., Ramasamy, V., Tingdahl, D., & Siegwart,
R. (2024). Nvblox: GPU-accelerated incremental signed distance field mapping. 2024
IEEE International Conference on Robotics and Automation (ICRA), 2698–2705. https:
//doi.org/10.1109/ICRA57147.2024.10611532

Project Jupyter. (2017). repo2docker: Turn repositories into Jupyter-enabled Docker images.
https://repo2docker.readthedocs.io/ accessed 2025-09-15.

QEMU Project. (2003). QEMU: A generic and open source machine emulator and virtualizer.
https://www.qemu.org/ accessed 2025-09-15.

Ritchie, S., Slone, A., & Ramasesh, V. (2020). Caliban: Docker-based job manager for

Paolillo. (2026). pythainer: composable and reusable Docker builders and runners for reproducible research. Journal of Open Source Software,
11(117), 9059. https://doi.org/10.21105/joss.09059.

4

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://doi.org/10.1145/3735452.3735535
https://containers.dev
https://www.docker.com/
https://www.docker.com/
https://docs.docker.com/compose/
https://docker-py.readthedocs.io/
https://www.youtube.com/watch?v=F7m5_kQ_mRQ
https://www.youtube.com/watch?v=F7m5_kQ_mRQ
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1109/IROS47612.2022.9982082
https://doi.org/10.1109/IROS47612.2022.9982082
https://doi.org/10.1109/ICRA57147.2024.10611532
https://doi.org/10.1109/ICRA57147.2024.10611532
https://repo2docker.readthedocs.io/
https://www.qemu.org/
https://doi.org/10.21105/joss.09059


reproducible workflows. Journal of Open Source Software, 5(53), 2403. https://doi.org/
10.21105/joss.02403

Shen, Y., Mynsbrugge, J. V., Roshandel, N., Bouchez, R., FirouziPouyaei, H., Scholz, C., Cao,
H., Vanderborght, B., Joosen, W., & Paolillo, A. (2025). SentryRT‑1: A case study in
evaluating real‑time linux for safety‑critical robotic perception. Proceedings of the 19th
Workshop on Operating Systems Platforms for Embedded Real‑time Applications (OSPERT
2025), 35–41.

Tani, J., Daniele, A. F., Bernasconi, G., Camus, A., Petrov, A., Courchesne, A., Mehta, B.,
Suri, R., Zaluska, T., Walter, M. R., Frazzoli, E., Paull, L., & Censi, A. (2020). Integrated
benchmarking and design for reproducible and accessible evaluation of robotic agents. 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 6229–6236.
https://doi.org/10.1109/IROS45743.2020.9341677

Viereck, M. (2019). x11docker: Run GUI applications in Docker containers. Journal of Open
Source Software, 4(37), 1349. https://doi.org/10.21105/joss.01349

Paolillo. (2026). pythainer: composable and reusable Docker builders and runners for reproducible research. Journal of Open Source Software,
11(117), 9059. https://doi.org/10.21105/joss.09059.

5

https://doi.org/10.21105/joss.02403
https://doi.org/10.21105/joss.02403
https://doi.org/10.1109/IROS45743.2020.9341677
https://doi.org/10.21105/joss.01349
https://doi.org/10.21105/joss.09059

	Summary
	Statement of need
	Functionality
	Research applications
	Related work
	Acknowledgements
	References

