
CommaSuite: Monitoring and Testing of OpenAPI
and AsyncAPI Software Interfaces
Ivan Kurtev 1, Daan van der Munnik2, and Mathijs Schuts 3

1 TU/e, The Netherlands 2 Philips, The Netherlands 3 TNO-ESI, The Netherlands
DOI: 10.21105/joss.09069

Software
• Review
• Repository
• Archive

Editor: Richard Littauer
Reviewers:

• @rohanrasane
• @kkmurthyt21
• @abhishektiwari

Submitted: 08 September 2025
Published: 08 October 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
A broad spectrum of scientific software engineering research can benefit from the use of precise
component descriptions. CommaSuite1 is an open-source research tool designed to support
the specification and design of software interfaces and components (Kurtev et al., 2024). It
utilizes DSLs (Domain Specific Languages) to model interface and component behavior in an
implementation technology agnostic notation. CommaSuite’s main capability is to generate a
runtime monitor (Falcone et al., 2021) from these models. This monitor enables verification
of whether the component interactions conform to the specified behavior. A recent addition
to CommaSuite includes support for MBT (Model-Based Testing) (Utting et al., 2012) of
component implementations. With this capability, test applications are automatically generated
from models.

Since 2015, CommaSuite has been used in applied research projects within the Dutch high-tech
industry. Initially, only proprietary, company-specific interface technologies that are closed-
source were supported. In this paper, we present a major new release of CommaSuite that
includes support for widely used, open-source software interface technologies.

Statement of need
Verification of high-tech systems remains a dynamic and evolving area of research. Key solution
approaches are being explored across several research directions such as interface definition
languages, runtime monitoring, and model-based testing.

CPSs (Cyber-Physical Systems)–such as autonomous vehicles (Araujo et al., 2023), robots
(Caldas et al., 2024), and drones (Islam et al., 2024)–are increasingly driven by AI (Artificial
Intelligence) (Rahman et al., 2021). To ensure the safe operation of these AI-enabled systems,
runtime monitoring can be employed to detect and respond to deviations from the specified
behavior. For systems that do not rely on AI, MBT offers a promising approach for pre-release
acquiring confidence in the correctness.

Although CommaSuite is based on technology agnostic specification languages, the generated
artefacts have to interact or consume data via concrete interface technologies. This requires
development of converters and adaptors. For example, the observed messages to and from
components are usually interface technology specific and need to be converted to a format
understandable by the generated runtime monitor. Similarly, the generated test applications
need to use a concrete interface technology to access the intended component under test.

In the 3.0.0 release2 of CommaSuite, support has been added for two widely adopted open-source
software interface technologies: OpenAPI and AsyncAPI. OpenAPI (Karavisileiou et al., 2020) is
extensively used in both web development and CPSs, and is supported by a broad ecosystem of

1https://eclipse.dev/comma/
2https://gitlab.eclipse.org/eclipse/comma/comma/-/releases/v3.0.0

Kurtev et al. (2025). CommaSuite: Monitoring and Testing of OpenAPI and AsyncAPI Software Interfaces. Journal of Open Source Software,
10(114), 9069. https://doi.org/10.21105/joss.09069.

1

https://orcid.org/0009-0003-3783-405X
https://orcid.org/0009-0002-4166-288X
https://doi.org/10.21105/joss.09069
https://github.com/openjournals/joss-reviews/issues/9069
https://gitlab.eclipse.org/eclipse/comma/comma
https://doi.org/10.5281/zenodo.17277974
https://burntfen.com
https://orcid.org/0000-0001-5428-7535
https://github.com/rohanrasane
https://github.com/kkmurthyt21
https://github.com/abhishektiwari
https://creativecommons.org/licenses/by/4.0/
https://eclipse.dev/comma/
https://gitlab.eclipse.org/eclipse/comma/comma/-/releases/v3.0.0
https://doi.org/10.21105/joss.09069


tools3. AsyncAPI (Gómez et al., 2020) is commonly used in the development of IoT (Internet-
of-Things) applications and CPSs, and also benefits from a rich set of supporting tools4.
By integrating these technologies into the open-source version of CommaSuite, researchers
and practitioners can benefit from CommaSuite across a wider range of active research and
application domains, and can experiment with the verification of applications based on these
technologies.

Functionality
To tailor CommaSuite to specific interface technologies, dedicated translators and generators
are required. Figure 1 illustrates the architecture of CommaSuite, which includes DSLs at its
core along with the translators and generators that handle technology-specific artifacts. In the
following sections, we describe the generation of interface technology-specific specifications, and
the translation of Wireshark captures into CommaSuite’s input format for runtime monitoring.
Additionally, we explain the generation of adapters for CommaSuite’s model-based testing
application.

Figure 1: Overview of CommaSuite’s translators and generators

Generating Specifications
As illustrated in Figure 1, CommaSuite can generate OpenAPI and AsyncAPI interface specifi-
cations directly from CommaSuite models. These specifications are produced in YAML (YAML
Ain’t Markup Language) format (Evans et al., 2017), which serves as input for the various
supporting tools referenced earlier. Since OpenAPI and AsyncAPI share a common format
for defining data types, the CommaSuite generator avoids duplication by creating a separate
YAML file containing all data type definitions. This shared data types file is then imported
into the OpenAPI and AsyncAPI interface specifications.

Runtime Monitoring
Runtime Monitoring (Kurtev et al., 2017; Kurtev & Hooman, 2022) is the main capability
of CommaSuite. It includes the interface technology agnostic Events DSL, a core part of
CommaSuite, which serves as an input language for the runtime monitor. The Events DSL
is used to encode the observed component interactions in terms of exchanged messages.
To enable runtime monitoring for OpenAPI and AsyncAPI software interfaces, a dedicated
translator has been developed. This allows interactions between components–observable at the

3https://tools.openapis.org/
4https://www.asyncapi.com/tools

Kurtev et al. (2025). CommaSuite: Monitoring and Testing of OpenAPI and AsyncAPI Software Interfaces. Journal of Open Source Software,
10(114), 9069. https://doi.org/10.21105/joss.09069.

2

https://tools.openapis.org/
https://www.asyncapi.com/tools
https://doi.org/10.21105/joss.09069


software interface level such as using Wireshark (Jain, 2022)–to be captured and translated
into the CommaSuite’s Events DSL format.

Model-Based Testing
MBT (Schuts et al., 2025) is another capability of CommaSuite. From CommaSuite models, a
test application can be automatically generated. This test application is interface technology
agnostic by design. However, to test a SUT (System Under Test) that uses OpenAPI and/or
AsyncAPI interfaces, a dedicated test adapter is required. This adapter, which bridges the test
application and the SUT, can also be generated from CommaSuite models.

Application at Philips IGT
Earlier versions of CommaSuite have been successfully applied in industrial research projects
at Philips IGT. In these projects, both runtime monitoring (Kurtev et al., 2017) and MBT
(Schuts et al., 2025) were employed using a proprietary, Philips-specific interface technology.

More recently, the newly added support for OpenAPI and AsyncAPI has been utilized at Philips
IGT for the definition, design, implementation, and verification of new software interfaces.
This demonstrates CommaSuite’s applicability to open-source interface standards in a large,
industrial application.

State of the field

There exist a number of tools that support development of APIs such as Postman5, Swag-
gerHub6, AsyncAPI Studio7, among others. These tools usually support technology-specific
notations for specifying the APIs and data schemas, for example, YAML files.

CommaSuite provides interface technology agnostic modeling notation at a higher level of
abstraction where the models can be used for multiple purposes. Furthermore, CommaSuite
supports the specification of the allowed order of API calls in the form of state machines
and the expected timing behavior. While some of the existing tools provide a degree of test
automation, in most of the cases the developers still need to develop the test cases manually.
CommaSuite via its MBT support enables automatic generation of test cases and test adapters.

It should be noted that our approach does not aim at generating implementation of the
OpenAPI and AsyncAPI specifications. Some of the mentioned existing tools provide support
for this task.

Documentation
Comprehensive documentation for the newly added OpenAPI and AsyncAPI support is avail-
able at https://eclipse.dev/comma/generators/generators.html; navigate to “OpenAPI and
AsyncAPI Support” from the left-hand side menu.

The CommaSuite version 3.0.0 release includes an example project that demonstrates how
to use CommaSuite with OpenAPI and AsyncAPI software interfaces. The example project
provides users with a concrete starting point to explore and apply the described capabilities8.

Note that the limitations of the described capabilities are part of the referenced documentation.
5https://www.postman.com/
6https://tools.openapis.org/
7https://www.asyncapi.com/tools
8See https://eclipse.dev/comma/site/download.html; the example can be obtained via File → New →

Example… → Vending Machine Test Application REST Example; the README file of this example contains
more information, e.g., on the execution of the SUT and test application, and about creating a Wireshark
capture.

Kurtev et al. (2025). CommaSuite: Monitoring and Testing of OpenAPI and AsyncAPI Software Interfaces. Journal of Open Source Software,
10(114), 9069. https://doi.org/10.21105/joss.09069.

3

https://eclipse.dev/comma/generators/generators.html
https://www.postman.com/
https://tools.openapis.org/
https://www.asyncapi.com/tools
https://eclipse.dev/comma/site/download.html
https://doi.org/10.21105/joss.09069


Acknowledgements
The research is carried out as part of the “Model-Based Testing with ComMA” program under
the responsibility of TNO-ESI in cooperation with Philips. Model-Based Testing with ComMA

is funded by Holland High Tech | TKI HSTM via the PPP Innovation Scheme (PPP-I) for
public-private partnerships.

We would like to thank Jordi Betting and Dheeraj Kulkarni from Philips for their valuable
discussions and feedback on the prototype implementations.

References
Araujo, H., Mousavi, M. R., & Varshosaz, M. (2023). Testing, validation, and verification of

robotic and autonomous systems: A systematic review. ACM Transactions on Software
Engineering and Methodology, 32(2), 1–61. https://doi.org/10.1145/3542945

Caldas, R., Garcıá, J. A. P., Schiopu, M., Pelliccione, P., Rodrigues, G., & Berger, T.
(2024). Runtime verification and field-based testing for ROS-based robotic systems. IEEE
Transactions on Software Engineering. https://doi.org/10.1109/tse.2024.3444697

Evans, C., Ben-Kiki, O., & Net, I. döt. (2017). YAML ain’t markup language (YAML™)
version 1.2.

Falcone, Y., Krstić, S., Reger, G., & Traytel, D. (2021). A taxonomy for classifying runtime
verification tools. International Journal on Software Tools for Technology Transfer, 23(2),
255–284. https://doi.org/10.1007/s10009-021-00609-z

Gómez, A., Iglesias-Urkia, M., Urbieta, A., & Cabot, J. (2020). A model-based approach for
developing event-driven architectures with AsyncAPI. Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems, 121–131.
https://doi.org/10.1145/3365438.3410948

Islam, M. N. A., Cleland-Huang, J., & Vierhauser, M. (2024). Adam: Adaptive monitoring of
runtime anomalies in small uncrewed aerial systems. Proceedings of the 19th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, 44–55.
https://doi.org/10.1145/3643915.3644092

Jain, V. (2022). Introduction to Wireshark (pp. 1–34). Apress. https://doi.org/10.1007/
978-1-4842-8002-7_1

Karavisileiou, A., Mainas, N., & Petrakis, E. G. (2020). Ontology for OpenAPI REST services
descriptions. 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence
(ICTAI), 35–40. https://doi.org/10.1109/ictai50040.2020.00016

Kurtev, I., & Hooman, J. (2022). Runtime verification of compound components with ComMA.
In A journey from process algebra via timed automata to model learning: Essays dedicated
to Frits Vaandrager on the occasion of his 60th birthday (pp. 382–402). Springer.
https://doi.org/10.1007/978-3-031-15629-8_21

Kurtev, I., Hooman, J., & Schuts, M. (2017). Runtime monitoring based on interface
specifications. Springer. https://doi.org/10.1007/978-3-319-68270-9_17

Kurtev, I., Hooman, J., Schuts, M., & Munnik, D. van der. (2024). Model based component
development and analysis with ComMA. Science of Computer Programming, 233, 103067.
https://doi.org/10.1016/j.scico.2023.103067

Rahman, Q. M., Corke, P., & Dayoub, F. (2021). Run-time monitoring of machine learning
for robotic perception: A survey of emerging trends. IEEE Access, 9, 20067–20075.
https://doi.org/10.1109/access.2021.3055015

Kurtev et al. (2025). CommaSuite: Monitoring and Testing of OpenAPI and AsyncAPI Software Interfaces. Journal of Open Source Software,
10(114), 9069. https://doi.org/10.21105/joss.09069.

4

https://doi.org/10.1145/3542945
https://doi.org/10.1109/tse.2024.3444697
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1145/3365438.3410948
https://doi.org/10.1145/3643915.3644092
https://doi.org/10.1007/978-1-4842-8002-7_1
https://doi.org/10.1007/978-1-4842-8002-7_1
https://doi.org/10.1109/ictai50040.2020.00016
https://doi.org/10.1007/978-3-031-15629-8_21
https://doi.org/10.1007/978-3-319-68270-9_17
https://doi.org/10.1016/j.scico.2023.103067
https://doi.org/10.1109/access.2021.3055015
https://doi.org/10.21105/joss.09069


Schuts, M., Hooman, J., Kurtev, I., Tlili, I., & Oerlemans, E. (2025). Online model-based
testing reusing multiple design models in an industrial setting. Journal of Object Technology,
24(2), 2:1–14. https://doi.org/10.5381/jot.2025.24.2.a6

Utting, M., Pretschner, A., & Legeard, B. (2012). A taxonomy of model-based testing
approaches. Software Testing, Verification and Reliability, 22(5), 297–312. https://doi.
org/10.1002/stvr.456

Kurtev et al. (2025). CommaSuite: Monitoring and Testing of OpenAPI and AsyncAPI Software Interfaces. Journal of Open Source Software,
10(114), 9069. https://doi.org/10.21105/joss.09069.

5

https://doi.org/10.5381/jot.2025.24.2.a6
https://doi.org/10.1002/stvr.456
https://doi.org/10.1002/stvr.456
https://doi.org/10.21105/joss.09069

	Summary
	Statement of need
	Functionality
	Generating Specifications
	Runtime Monitoring
	Model-Based Testing
	Application at Philips IGT

	State of the field
	Documentation
	Acknowledgements
	References

