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Summary
A broad spectrum of scientific software engineering research can benefit from the use of precise
component descriptions. CommaSuite1 is an open-source research tool designed to support
the specification and design of software interfaces and components (Kurtev et al., 2024). It
utilizes DSLs (Domain Specific Languages) to model interface and component behavior in an
implementation technology agnostic notation. CommaSuite’s main capability is to generate a
runtime monitor (Falcone et al., 2021) from these models. This monitor enables verification
of whether the component interactions conform to the specified behavior. A recent addition
to CommaSuite includes support for MBT (Model-Based Testing) (Utting et al., 2012) of
component implementations. With this capability, test applications are automatically generated
from models.

Since 2015, CommaSuite has been used in applied research projects within the Dutch high-tech
industry. Initially, only proprietary, company-specific interface technologies that are closed-
source were supported. In this paper, we present a major new release of CommaSuite that
includes support for widely used, open-source software interface technologies.

Statement of need
Verification of high-tech systems remains a dynamic and evolving area of research. Key solution
approaches are being explored across several research directions such as interface definition
languages, runtime monitoring, and model-based testing.

CPSs (Cyber-Physical Systems)–such as autonomous vehicles (Araujo et al., 2023), robots
(Caldas et al., 2024), and drones (Islam et al., 2024)–are increasingly driven by AI (Artificial
Intelligence) (Rahman et al., 2021). To ensure the safe operation of these AI-enabled systems,
runtime monitoring can be employed to detect and respond to deviations from the specified
behavior. For systems that do not rely on AI, MBT offers a promising approach for pre-release
acquiring confidence in the correctness.

Although CommaSuite is based on technology agnostic specification languages, the generated
artefacts have to interact or consume data via concrete interface technologies. This requires
development of converters and adaptors. For example, the observed messages to and from
components are usually interface technology specific and need to be converted to a format
understandable by the generated runtime monitor. Similarly, the generated test applications
need to use a concrete interface technology to access the intended component under test.

In the 3.0.0 release2 of CommaSuite, support has been added for two widely adopted open-source
software interface technologies: OpenAPI and AsyncAPI. OpenAPI (Karavisileiou et al., 2020) is
extensively used in both web development and CPSs, and is supported by a broad ecosystem of

1https://eclipse.dev/comma/
2https://gitlab.eclipse.org/eclipse/comma/comma/-/releases/v3.0.0
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tools3. AsyncAPI (Gómez et al., 2020) is commonly used in the development of IoT (Internet-
of-Things) applications and CPSs, and also benefits from a rich set of supporting tools4.
By integrating these technologies into the open-source version of CommaSuite, researchers
and practitioners can benefit from CommaSuite across a wider range of active research and
application domains, and can experiment with the verification of applications based on these
technologies.

Functionality
To tailor CommaSuite to specific interface technologies, dedicated translators and generators
are required. Figure 1 illustrates the architecture of CommaSuite, which includes DSLs at its
core along with the translators and generators that handle technology-specific artifacts. In the
following sections, we describe the generation of interface technology-specific specifications, and
the translation of Wireshark captures into CommaSuite’s input format for runtime monitoring.
Additionally, we explain the generation of adapters for CommaSuite’s model-based testing
application.

Figure 1: Overview of CommaSuite’s translators and generators

Generating Specifications
As illustrated in Figure 1, CommaSuite can generate OpenAPI and AsyncAPI interface specifi-
cations directly from CommaSuite models. These specifications are produced in YAML (YAML
Ain’t Markup Language) format (Evans et al., 2017), which serves as input for the various
supporting tools referenced earlier. Since OpenAPI and AsyncAPI share a common format
for defining data types, the CommaSuite generator avoids duplication by creating a separate
YAML file containing all data type definitions. This shared data types file is then imported
into the OpenAPI and AsyncAPI interface specifications.

Runtime Monitoring
Runtime Monitoring (Kurtev et al., 2017; Kurtev & Hooman, 2022) is the main capability
of CommaSuite. It includes the interface technology agnostic Events DSL, a core part of
CommaSuite, which serves as an input language for the runtime monitor. The Events DSL
is used to encode the observed component interactions in terms of exchanged messages.
To enable runtime monitoring for OpenAPI and AsyncAPI software interfaces, a dedicated
translator has been developed. This allows interactions between components–observable at the

3https://tools.openapis.org/
4https://www.asyncapi.com/tools
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software interface level such as using Wireshark (Jain, 2022)–to be captured and translated
into the CommaSuite’s Events DSL format.

Model-Based Testing
MBT (Schuts et al., 2025) is another capability of CommaSuite. From CommaSuite models, a
test application can be automatically generated. This test application is interface technology
agnostic by design. However, to test a SUT (System Under Test) that uses OpenAPI and/or
AsyncAPI interfaces, a dedicated test adapter is required. This adapter, which bridges the test
application and the SUT, can also be generated from CommaSuite models.

Application at Philips IGT
Earlier versions of CommaSuite have been successfully applied in industrial research projects
at Philips IGT. In these projects, both runtime monitoring (Kurtev et al., 2017) and MBT
(Schuts et al., 2025) were employed using a proprietary, Philips-specific interface technology.

More recently, the newly added support for OpenAPI and AsyncAPI has been utilized at Philips
IGT for the definition, design, implementation, and verification of new software interfaces.
This demonstrates CommaSuite’s applicability to open-source interface standards in a large,
industrial application.

State of the field

There exist a number of tools that support development of APIs such as Postman5, Swag-
gerHub6, AsyncAPI Studio7, among others. These tools usually support technology-specific
notations for specifying the APIs and data schemas, for example, YAML files.

CommaSuite provides interface technology agnostic modeling notation at a higher level of
abstraction where the models can be used for multiple purposes. Furthermore, CommaSuite
supports the specification of the allowed order of API calls in the form of state machines
and the expected timing behavior. While some of the existing tools provide a degree of test
automation, in most of the cases the developers still need to develop the test cases manually.
CommaSuite via its MBT support enables automatic generation of test cases and test adapters.

It should be noted that our approach does not aim at generating implementation of the
OpenAPI and AsyncAPI specifications. Some of the mentioned existing tools provide support
for this task.

Documentation
Comprehensive documentation for the newly added OpenAPI and AsyncAPI support is avail-
able at https://eclipse.dev/comma/generators/generators.html; navigate to “OpenAPI and
AsyncAPI Support” from the left-hand side menu.

The CommaSuite version 3.0.0 release includes an example project that demonstrates how
to use CommaSuite with OpenAPI and AsyncAPI software interfaces. The example project
provides users with a concrete starting point to explore and apply the described capabilities8.

Note that the limitations of the described capabilities are part of the referenced documentation.
5https://www.postman.com/
6https://tools.openapis.org/
7https://www.asyncapi.com/tools
8See https://eclipse.dev/comma/site/download.html; the example can be obtained via File → New →

Example… → Vending Machine Test Application REST Example; the README file of this example contains
more information, e.g., on the execution of the SUT and test application, and about creating a Wireshark
capture.
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