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Summary
Optical multilayer thin-films are fundamental components that enable the precise control of
reflectance, transmittance, and phase shift in the design of photonic systems. Rapid and
accessible simulation of these structures holds critical importance for designing and analyzing
complex coatings. While researchers commonly use the traditional transfer matrix method
for designing these structures, its scalar approach to wavelength and angle of incidence
causes redundant recalculations and inefficiencies in large-scale simulations. Furthermore,
traditional method implementations do not support automatic differentiation, which limits their
applicability in gradient-based inverse design approaches. Here, we present TMMax, a Python
library that fully vectorizes and accelerates transfer matrix method using the high-performance
machine learning library JAX. TMMax supports CPU, GPU, and TPU hardware, and includes
a publicly available material database. Our approach, demonstrated through benchmarking,
allows us to model thin-film stacks with hundreds of layers within seconds. This illustrates
that our method speeds up simulations by two orders of magnitude over a baseline NumPy
implementation, enabling optical engineers and thin-film researchers in optics and photonics to
efficiently design complex dielectric multilayer structures through rapid and scalable simulations.

Statement of need
The Transfer Matrix Method (TMM) models multilayer optical thin films by applying Snell’s law
for light propagation and Fresnel equations to compute interface transmittance and reflectance.

M =
𝑁−2
∏
𝑖=0

M𝑖 (1)

In TMM, the optical behavior of an N-layer multilayer structure composed of dielectric
materials is obtained by computing the system matrix M, as shown in Equation (1). This
matrix calculation, commonly referred to as the Abeles TMM (Abelès, Florin, 1950), results
from the successive multiplication of the transfer matrices of each layer (M𝑖) (Katsidis &
Siapkas, 2002).
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Figure 1: Schematic of two strategies for calculating transmission, reflection, and absorption in multilayer
thin-film simulations. The system (a) is modeled either by sequentially multiplying 2×2 transfer matrices
for each wavelength and incidence angle (b) or by vectorizing these operations across both axes (c).

In traditional TMM implementations, the stack of layers in Figure 1a is simulated using
a single wavelength and angle of incidence, as shown in Figure 1b, and nested loops over
wavelengths and angles lead to redundant calculations (Byrnes, 2020). TMMax removes these
redundancies by vectorizing wavelengths and angles and all intermediate TMM operations via
JAX (Bradbury et al., 2018). As seen in the schematic of the vectorized implementation in
Figure 1c, we vectorize all intermediate operations in TMM and subsequently apply JAX’s
just-in-time (JIT) decorator. Instead of running the mapped TMM code sequentially over
each batch element of wavelength and angle of incidence, jax.jit fuses all operations across
the batch into a single XLA-compiled (OpenXLA Team, 2023) kernel. This reduces function
call overhead and provides a faster TMM implementation. TMMax replaces the conventional
for-loop system-matrix calculation (Nishida et al., 2011) with JAX’s lax.scan, enabling JIT
compilation and eliminating interpreter bottlenecks, while running efficiently on CPUs, GPUs,
and TPUs without code changes.

TMMax supports deep learning–based inverse design by keeping all computations on the GPU,
avoiding costly CPU–GPU data transfers (Hegde, 2019). Whereas NumPy-based (Harris et al.,
2020) TMM packages that lack native gradients and require Autograd (Maclaurin et al., 2015),
TMMax natively computes gradients. Additionally, TMMax integrates a curated database of 30
extensively used dielectric materials, sourced from refractiveindex.info (Polyanskiy, 2024),
thereby enabling optical engineers and thin-film researchers in optics and photonics to efficiently
simulate complex multilayer structures through a scalable, JAX-accelerated implementation.

Benchmarks
Runtime in TMM scales naturally with the number of layers, as well as the lengths of
the wavelength and incidence-angle arrays, due to the increased number of transfer matrix
multiplications. To benchmark TMMax, we used tmm library (Byrnes, 2020) as a reference.
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Figure 2: Run time vs. layer count comparing ‘tmm‘ (orange) and TMMax (blue).

To assess how layer count affects computational performance, we sampled 20 multilayer
structures ranging from 2 to 400 layers, with each layer randomly assigned one of seven
materials and thicknesses between 100–500 nm. Spectral and angular domains were fixed at 20
points each, spanning 500–1000 nm and 0–π/2 radians, respectively. Figure 2 shows that while
tmm runtime grows rapidly, TMMax scales efficiently, remaining nearly constant (~1.0–1.2 s)
for low-layer structures and achieving speedups from 18× (2 layers) to 700× (400 layers).

Figure 3: The colormaps show the runtime performance of ‘tmm‘ and TMMax across varying simulation
grid sizes, comparing 8- and 80-layer stacks in (a) and (b), respectively.
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We benchmarked the effects of wavelength and incident angle array sizes by sampling 20 values
from 2 to 100, generating simulation grids from 2×2 to 100×100 for an 8-layer structure
(Figure 3a). tmm runtime rises sharply with grid size, reaching ~138 s for 100×100, whereas
TMMax remains below 3 s. For the smallest 2×2 grid, tmm is faster (~0.1 s vs. ~0.6 s) due to
NumPy’s low overhead, while JAX incurs higher initialization costs. As layers increase to 80
(Figure 3b), tmm exceeds 760 s, but TMMax stays under 8 s, demonstrating superior efficiency
and stability against both problem size and structural complexity.

We used Python’s timeit module to benchmark each simulation 50 times, with all comparisons
run on a single Intel Core i9 core without GPU or multicore use for fairness.

Installation
TMMax can be readily installed from the Python Package Index using pip install tmmax,
which automatically handles all dependencies. For detailed installation instructions and platform
compatibility, please refer to the TMMax Documentation.
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