The Journal of Open Source Software

DOI: 10.21105/joss.09122

Software
= Review 7
= Repository &
= Archive 7

Editor: Daniel S. Katz 7
Reviewers:

= @lwshanbd

DDC: The Discrete Domain Computation library

Thomas Padioleau ©®**, Julien Bigot ©'*, Emily Bourne ©?2, and Baptiste
Legouix ©3

1 Université Paris-Saclay, UVSQ, CNRS, CEA, Maison de la Simulation, 91191, Gif-sur-Yvette, France 2
SCITAS, EPFL, CH-1015 Lausanne, Switzerland 3 CEA, IRFM, 13108 Saint-Paul-lez-Durance Cedex,
France * These authors contributed equally.

Summary

The Discrete Domain Computation (DDC) library is a C++ library designed to provide high-
performance, strongly-typed labelled multidimensional arrays. Inspired by Python's Xarray
and built on top of performance-portable libraries like Kokkos, DDC enables expressive, safe,
and efficient numerical computations. It provides a coherent ecosystem to work with labelled
dimensions from data structures to algorithms. Additionally, DDC extends functionality through
modules such as FFT (based on kokkos-fft), splines, and with a bridge to the PDI library. The
library is actively used to modernize legacy scientific codes, such as the Fortran-based Gysela

plasma simulation code (Grandgirard et al., 2016).
= @cfguzman

Submitted: 21 May 2025 Statement of need

Published: 06 November 2025 . . L N
The use of multidimensional arrays is widespread across various fields, particularly in scientific

License computing, where they serve as fundamental data containers. A primary motivation for their
Authors of papers retain copyright e is their potential to improve computational performance by leveraging problem-specific
Z”d r‘?leaée the Wor;“”f;er.a 0 structures. For instance, when solving a partial differential equation that results in a stencil
reative Commons Attribution 4. problem, computations typically achieve higher efficiency on a structured mesh compared to
International License (CC BY 4.0). . Lo .
an unstructured mesh. This advantage primarily stems from a better usage of memory, with
predictable accesses, and better cache utilization.

Many programming languages commonly used in scientific computing support multidimensional
arrays in different ways. Fortran, a longstanding choice in the field, and Julia, a more recent
language, both natively support these data structures. In contrast, the Python ecosystem
relies on the popular NumPy library’s numpy.Array (Harris et al., 2020). Meanwhile, C++23
introduced std: :mdspan to the standard library. This container was inspired by Kokkos: :View
from the Kokkos library which also serves as the foundation of DDC.

Despite their importance, multidimensional arrays introduce several practical challenges. In a
sense, they encourage the usage of implicit information in the source code. A frequent source
of errors is the inadvertent swapping of indices when accessing elements. Such errors can
be difficult to detect, especially given the common convention of using single-letter variable
names like 1 and j for indexing. Another challenge in medium-to-large codebases is the lack
of semantic clarity in function signatures when using raw multidimensional arrays. When
array dimensions carry specific meanings, this information is not explicitly represented in the
source code, leaving it up to the user to ensure that dimensions are ordered correctly according
to implicit expectations. For example it is quite usual to use the same index for multiple
interpretations: looping over mesh cells identified by i and interpreting i+1 as the face to
the right. Another example is slicing that removes dimensions, this can shift the positions of
remaining dimensions, altering the correspondence between axis indices and their semantic
meanings.

Padioleau et al. (2025). DDC: The Discrete Domain Computation library. Journal of Open Source Software, 10(115), 9122. https://doi.org/10. 1
21105/joss.09122.

https://orcid.org/0000-0001-5496-0013
https://orcid.org/0000-0002-0015-4304
https://orcid.org/0000-0002-3469-2338
https://orcid.org/0009-0006-7585-669X
https://doi.org/10.21105/joss.09122
https://github.com/openjournals/joss-reviews/issues/9122
https://github.com/CExA-project/ddc
https://doi.org/10.5281/zenodo.17511922
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/lwshanbd
https://github.com/cfguzman
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.09122
https://doi.org/10.21105/joss.09122

The Journal of Open Source Software

Solutions have been proposed to address these issues. For example, in Python, the Xarray (Hoyer
& Hamman, 2017) library allows users to label dimensions that can then be used to perform
computations. Following a similar approach, the “Discrete Domain Computation” (DDC)
library aims to bring equivalent functionality to the C++ ecosystem. It uses a zero overhead
abstraction approach, i.e., with labels fixed at compile-time, on top of different performant
portable libraries, such as Kokkos C. Trott et al. (2021), Kokkos Kernels (Rajamanickam
et al., 2021), kokkos-fft (Asahi et al., 2025), and Ginkgo (Anzt et al., 2020). Labelling at
compile time is achieved by strongly typing dimensions, an approach similar to that used in
units libraries such as mp-units (Pusz et al., 2024), which strongly type quantities rather than
dimensions.

The library is actively used to modernize the Fortran-based Gysela plasma simulation code
(Bourne et al., 2025). This simulation code relies heavily on high-dimensional arrays. While the
data stored in the arrays has 7 dimensions, each dimension can have multiple representations,
including Fourier, spline, Cartesian, and various curvilinear meshes. The legacy Fortran
implementation was used to manipulate multi-dimensional arrays that stored slices of all
the possible dimensions with very limited information about which dimensions were actually
represented to enforce correctness at the APl level. DDC enables a more explicit, strongly-typed
representation of these arrays, ensuring at compile-time that function calls respect the expected
dimensions. This reduces indexing errors and improves code maintainability, particularly in
large-scale scientific software.

DDC Core key features

The DDC library is a C++ library designed for expressive and safe handling of multidimensional
data. Its core component provides flexible data containers along with algorithms built on top
of the performance portable Kokkos library. The library is fully compatible with Kokkos and
does not attempt to hide it, allowing users to leverage Kokkos' full capabilities while benefiting
from DDC's strongly-typed, labelled multidimensional arrays when and where it makes sense.

Strongly-typed labelled indices

DDC employs strongly-typed multi-indices to label dimensions and access data. It introduces
two types of multi-indices to access the container’s data:

= DiscreteVector multi-indices:
— strongly-typed labelled integers,
— provide a multidimensional array access semantics,
— always as fast access as raw multidimensional array,
= DiscreteElement multi-indices:
— strongly-typed labelled keys or opaque identifiers,
— provide an associative access semantics, as keys in a map container,
— potentially slower access, depending on the type of set of DiscreteElement.

In a DDC container, DiscreteElement indices represent absolute positions, while
DiscreteVector indices are always relative to the beginning of the container.

Padioleau et al. (2025). DDC: The Discrete Domain Computation library. Journal of Open Source Software, 10(115), 9122. https://doi.org/10. 2

21105/joss.09122.

https://doi.org/10.21105/joss.09122
https://doi.org/10.21105/joss.09122

The Journal of Open Source Software

Ye
Yd
Ye
Yb
vo| [
Xa Xp Xc Xg Xe >X

Figure 1: Example of two sets of DiscreteElement.

For example, consider Figure 1 that illustrates a two-dimensional data chunk with axes X and
Y. Here chunk_r is a container defined over the red area and chunk_b is a slice of chunk_r
over the blue area. Let us define

= DiscreteElement<X, Y> e(x_c, y_b),
= DiscreteVector<X, Y> v(2, 1),
= DiscreteVector<X, Y> w(0, 1).

In this case, the following expressions all refer to the same memory location:

= chunk_r
= chunk_b
= chunk_r
= chunk_b

This highlights the fact that DiscreteElement provides a globally consistent indexing mecha-
nism, while DiscreteVector is context-dependent and relative to the container’s origin.

Sets of DiscreteElement

The semantics of DDC containers associates data to a set of DiscreteElement indices. Let us
note that the set of all possible DiscreteElement has a total order that is typically established
once and for all at program initialization. Thus, to be able to construct a DDC container, one
must provide a multidimensional set of DiscreteElement indices, where only these indices can
be later used to access the container’s data.

The library provides several ways to group DiscreteElement into sets, each represented as a
Cartesian product of per-dimension sets. These sets offer a lookup function to retrieve the
position of a multi-index relative to the front of the set. The performance of container data
access depends significantly on the compile-time properties of the set used.

Multidimensional algorithms

Finally, DDC offers multidimensional algorithms to manipulate the containers and associated
DiscreteElement indices such as parallel loops and reductions. The parallel versions are based
on Kokkos providing performance portability. DDC also provides transform-based algorithms
such as discrete Fourier transforms (via a Kokkos-fft wrapper) and spline transforms (Asahi et

Padioleau et al. (2025). DDC: The Discrete Domain Computation library. Journal of Open Source Software, 10(115), 9122. https://doi.org/10. 3

21105/joss.09122.

https://doi.org/10.21105/joss.09122
https://doi.org/10.21105/joss.09122

The Journal of Open Source Software

al., 2024), enabling conversions between sampled data and coefficients in Fourier or B-spline
bases over labeled dimensions.

Acknowledgements

We acknowledge the financial support of the Cross-Disciplinary Program on “Numerical
simulation” of CEA, the French Alternative Energies and Atomic Energy Commission. This
work has received support by the CExA Moonshot project of the CEA cexa-project. We
acknowledge contributions from the Maison de la Simulation. We also thank the developers
and contributors of the DDC project for their efforts in making numerical modeling more
accessible and efficient.

References

Anzt, H., Cojean, T., Chen, Y.-C., Flegar, G., Gobel, F., Gritzmacher, T., Nayak, P., Ribizel,
T., & Tsai, Y.-H. (2020). Ginkgo: A high performance numerical linear algebra library.
Journal of Open Source Software, 5(52), 2260. https://doi.org/10.21105/joss.02260

Asahi, Y., Legouix, B., Bourne, E., Padioleau, T., Bigot, J., Grandgirard, V., & Obrejan, K.
(2024). Development of performance portable spline solver for exa-scale plasma turbulence
simulation. SC24-w: Workshops of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 1117-1128. https://doi.org/10.1109/
SCW63240.2024.00154

Asahi, Y., Padioleau, T., Zehner, P., Bigot, J., & Lebrun-Grandie, D. (2025). Kokkos-fft: A
shared-memory FFT for the kokkos ecosystem. Journal of Open Source Software, 10(111),
8391. https://doi.org/10.21105/joss.08391

Bourne, E., Grandgirard, V., Asahi, Y., Bigot, J., Donnel, P., Hoffmann, A., Kara, A., Krah,
P., Legouix, B., Malaboeuf, E., Munschy, Y., Obrejan, K., Padioleau, T., Protais, M., &
Vidal, P. (2025). Gyselalib++: A portable c++ library for semi-Lagrangian kinetic and
gyrokinetic simulations. In Journal of Open Source Software (No. 113; Vol. 10, p. 8582).
The Open Journal. https://doi.org/10.21105/joss.08582

Grandgirard, V., Abiteboul, J., Bigot, J., Cartier-Michaud, T., Crouseilles, N., Dif-Pradalier,
G., Ehrlacher, Ch., Esteve, D., Garbet, X., Ghendrih, Ph., Latu, G., Mehrenberger,
M., Norscini, C., Passeron, Ch., Rozar, F., Sarazin, Y., Sonnendriicker, E., Strugarek,
A., & Zarzoso, D. (2016). A 5D gyrokinetic full-f global semi-Lagrangian code for
flux-driven ion turbulence simulations. Computer Physics Communications, 207, 35—68.
https://doi.org/10.1016/j.cpc.2016.05.007

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Rio, J. F. del, Wiebe, M., Peterson, P., .. Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362. https:
//doi.org/10.1038/s41586-020-2649-2

Hoyer, S., & Hamman, J. (2017). Xarray: N-D labeled arrays and datasets in Python. Journal
of Open Research Software, 5(1). https://doi.org/10.5334 /jors.148

Pusz, M., Guerrero Pefia, J. E., Hogg, C., & The mp-units project team. (2024). mp-units
(Version 2.4.0). https://github.com/mpusz/mp-units

Rajamanickam, S., Acer, S., Berger-Vergiat, L., Dang, V., Ellingwood, N., Harvey, E., Kelley,
B., Trott, C. R., Wilke, J., & Yamazaki, |. (2021). Kokkos kernels: Performance portable
sparse/dense linear algebra and graph kernels. arXiv Preprint arXiv:2103.11991.

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., Gayatri,
R., Harvey, E., Hollman, D. S., Ibanez, D., Liber, N., Madsen, J., Miles, J., Poliakoff, D.,
Powell, A., Rajamanickam, S., Simberg, M., Sunderland, D., Turcksin, B., & Wilke, J.

Padioleau et al. (2025). DDC: The Discrete Domain Computation library. Journal of Open Source Software, 10(115), 9122. https://doi.org/10. 4

21105/joss.09122.

https://cexa-project.org
https://doi.org/10.21105/joss.02260
https://doi.org/10.1109/SCW63240.2024.00154
https://doi.org/10.1109/SCW63240.2024.00154
https://doi.org/10.21105/joss.08391
https://doi.org/10.21105/joss.08582
https://doi.org/10.1016/j.cpc.2016.05.007
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5334/jors.148
https://github.com/mpusz/mp-units
https://doi.org/10.21105/joss.09122
https://doi.org/10.21105/joss.09122

The Journal of Open Source Software

(2022). Kokkos 3: Programming model extensions for the exascale era. IEEE Transactions
on Parallel and Distributed Systems, 33(4), 805-817. https://doi.org/10.1109/TPDS.
2021.3097283

Trott, C., Berger-Vergiat, L., Poliakoff, D., Rajamanickam, S., Lebrun-Grandie, D., Madsen, J.,
Al Awar, N., Gligoric, M., Shipman, G., & Womeldorff, G. (2021). The kokkos ecosystem:
Comprehensive performance portability for high performance computing. Computing in
Science Engineering, 23(5), 10-18. https://doi.org/10.1109/MCSE.2021.3098509

Padioleau et al. (2025). DDC: The Discrete Domain Computation library. Journal of Open Source Software, 10(115), 9122. https://doi.org/10. 5
21105/joss.09122.

https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.21105/joss.09122
https://doi.org/10.21105/joss.09122

	Summary
	Statement of need
	DDC Core key features
	Strongly-typed labelled indices
	Sets of DiscreteElement
	Multidimensional algorithms

	Acknowledgements
	References

