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Summary

The Discrete Domain Computation (DDC) library is a C++ library designed to provide high-
performance, strongly-typed labelled multidimensional arrays. Inspired by Python's Xarray
and built on top of performance-portable libraries like Kokkos, DDC enables expressive, safe,
and efficient numerical computations. It provides a coherent ecosystem to work with labelled
dimensions from data structures to algorithms. Additionally, DDC extends functionality through
modules such as FFT (based on kokkos-fft), splines, and with a bridge to the PDI library. The
library is actively used to modernize legacy scientific codes, such as the Fortran-based Gysela

plasma simulation code (Grandgirard et al., 2016).
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The use of multidimensional arrays is widespread across various fields, particularly in scientific

License computing, where they serve as fundamental data containers. A primary motivation for their
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an unstructured mesh. This advantage primarily stems from a better usage of memory, with
predictable accesses, and better cache utilization.

Many programming languages commonly used in scientific computing support multidimensional
arrays in different ways. Fortran, a longstanding choice in the field, and Julia, a more recent
language, both natively support these data structures. In contrast, the Python ecosystem
relies on the popular NumPy library’s numpy.Array (Harris et al., 2020). Meanwhile, C++23
introduced std: :mdspan to the standard library. This container was inspired by Kokkos: :View
from the Kokkos library which also serves as the foundation of DDC.

Despite their importance, multidimensional arrays introduce several practical challenges. In a
sense, they encourage the usage of implicit information in the source code. A frequent source
of errors is the inadvertent swapping of indices when accessing elements. Such errors can
be difficult to detect, especially given the common convention of using single-letter variable
names like 1 and j for indexing. Another challenge in medium-to-large codebases is the lack
of semantic clarity in function signatures when using raw multidimensional arrays. When
array dimensions carry specific meanings, this information is not explicitly represented in the
source code, leaving it up to the user to ensure that dimensions are ordered correctly according
to implicit expectations. For example it is quite usual to use the same index for multiple
interpretations: looping over mesh cells identified by i and interpreting i+1 as the face to
the right. Another example is slicing that removes dimensions, this can shift the positions of
remaining dimensions, altering the correspondence between axis indices and their semantic
meanings.
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Solutions have been proposed to address these issues. For example, in Python, the Xarray (Hoyer
& Hamman, 2017) library allows users to label dimensions that can then be used to perform
computations. Following a similar approach, the “Discrete Domain Computation” (DDC)
library aims to bring equivalent functionality to the C++ ecosystem. It uses a zero overhead
abstraction approach, i.e., with labels fixed at compile-time, on top of different performant
portable libraries, such as Kokkos C. Trott et al. (2021), Kokkos Kernels (Rajamanickam
et al., 2021), kokkos-fft (Asahi et al., 2025), and Ginkgo (Anzt et al., 2020). Labelling at
compile time is achieved by strongly typing dimensions, an approach similar to that used in
units libraries such as mp-units (Pusz et al., 2024), which strongly type quantities rather than
dimensions.

The library is actively used to modernize the Fortran-based Gysela plasma simulation code
(Bourne et al., 2025). This simulation code relies heavily on high-dimensional arrays. While the
data stored in the arrays has 7 dimensions, each dimension can have multiple representations,
including Fourier, spline, Cartesian, and various curvilinear meshes. The legacy Fortran
implementation was used to manipulate multi-dimensional arrays that stored slices of all
the possible dimensions with very limited information about which dimensions were actually
represented to enforce correctness at the APl level. DDC enables a more explicit, strongly-typed
representation of these arrays, ensuring at compile-time that function calls respect the expected
dimensions. This reduces indexing errors and improves code maintainability, particularly in
large-scale scientific software.

DDC Core key features

The DDC library is a C++ library designed for expressive and safe handling of multidimensional
data. Its core component provides flexible data containers along with algorithms built on top
of the performance portable Kokkos library. The library is fully compatible with Kokkos and
does not attempt to hide it, allowing users to leverage Kokkos' full capabilities while benefiting
from DDC's strongly-typed, labelled multidimensional arrays when and where it makes sense.

Strongly-typed labelled indices

DDC employs strongly-typed multi-indices to label dimensions and access data. It introduces
two types of multi-indices to access the container’s data:

= DiscreteVector multi-indices:
— strongly-typed labelled integers,
— provide a multidimensional array access semantics,
— always as fast access as raw multidimensional array,
= DiscreteElement multi-indices:
— strongly-typed labelled keys or opaque identifiers,
— provide an associative access semantics, as keys in a map container,
— potentially slower access, depending on the type of set of DiscreteElement.

In a DDC container, DiscreteElement indices represent absolute positions, while
DiscreteVector indices are always relative to the beginning of the container.
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Figure 1: Example of two sets of DiscreteElement.

For example, consider Figure 1 that illustrates a two-dimensional data chunk with axes X and
Y. Here chunk_r is a container defined over the red area and chunk_b is a slice of chunk_r
over the blue area. Let us define

= DiscreteElement<X, Y> e(x_c, y_b),
= DiscreteVector<X, Y> v(2, 1),
= DiscreteVector<X, Y> w(0, 1).

In this case, the following expressions all refer to the same memory location:

= chunk_r
= chunk_b
= chunk_r
= chunk_b

This highlights the fact that DiscreteElement provides a globally consistent indexing mecha-
nism, while DiscreteVector is context-dependent and relative to the container’s origin.

Sets of DiscreteElement

The semantics of DDC containers associates data to a set of DiscreteElement indices. Let us
note that the set of all possible DiscreteElement has a total order that is typically established
once and for all at program initialization. Thus, to be able to construct a DDC container, one
must provide a multidimensional set of DiscreteElement indices, where only these indices can
be later used to access the container’s data.

The library provides several ways to group DiscreteElement into sets, each represented as a
Cartesian product of per-dimension sets. These sets offer a lookup function to retrieve the
position of a multi-index relative to the front of the set. The performance of container data
access depends significantly on the compile-time properties of the set used.

Multidimensional algorithms

Finally, DDC offers multidimensional algorithms to manipulate the containers and associated
DiscreteElement indices such as parallel loops and reductions. The parallel versions are based
on Kokkos providing performance portability. DDC also provides transform-based algorithms
such as discrete Fourier transforms (via a Kokkos-fft wrapper) and spline transforms (Asahi et
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al., 2024), enabling conversions between sampled data and coefficients in Fourier or B-spline
bases over labeled dimensions.
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