The Journal of Open Source Software

DOI: 10.21105/joss.09128

Software
= Review &7
= Repository @
= Archive &0

Editor: Chris Vernon 7
Reviewers:

= @linuxscout

= @evamaxfield

Submitted: 24 August 2025

Published: 21 October 2025

License

Authors of papers retain copyright
and release the work under a

Creative Commons Attribution 4.0
International License (CC BY 4.0).

Shekar: A Python Toolkit for Persian Natural
Language Processing

Ahmad Amirivojdan ©19

1 University of Tennessee, Knoxville, United States § Corresponding author

Summary

Shekar is an open-source Python toolkit for Persian natural language processing (NLP). It
provides a modular, efficient, and easy-to-use framework for tasks such as text preprocessing,
tokenization, stemming, lemmatization, part-of-speech (POS) tagging, named entity recognition
(NER), keyword extraction, embeddings, spell checking, and visualization. lts composable
pipeline design supports reproducible workflows that scale effectively from basic text processing
to large-scale corpus analysis.

Statement of need

Persian natural language processing has expanded rapidly over the past decade, supporting
applications in digital humanities, social media analysis, conversational systems, and language
modeling. Accordingly, there has been substantial progress in developing tools for Persian
language processing. Libraries such as Hazm, Parsivar (Mohtaj et al., 2018), and DadmaTools
(Jafari et al., 2025) provide essential functionalities including normalization, tokenization, and
part-of-speech tagging. While these tools are valuable, they often come with limitations that
restrict flexibility, extensibility, and efficient deployment in diverse settings.

Common challenges include:

= Limited modularity, making it difficult to adapt components or extend functionality.

= Tight coupling between processing stages, which hinders the creation of custom workflows.

= Heavy dependencies and large transformer models that require GPUs or specialized
hardware for reasonable performance.

= lIrregular updates and delayed issue resolution, which affect long-term maintainability.

Shekar was developed to address these challenges by offering a lightweight, modular, and exten-
sible toolkit for Persian natural language processing. It adopts a clean and composable pipeline
architecture, allowing users to build workflows from independently configurable components.
This modular approach is especially effective for handling the complexities of Persian script,
including inconsistent diacritics, spacing conventions, and the blend of formal and colloquial
writing styles. It also supports practical applications such as OCR post-processing, social media
text normalization, and data preparation for training language models.

A key distinction of Shekar is its focus on algorithmic efficiency and accessibility. The toolkit
combines optimized preprocessing algorithms with lightweight, quantized transformer models,
making it practical for low-resource devices as well as diverse environments ranging from
research laboratories to production systems with limited computational capacity.

By emphasizing simplicity, performance, and modular design, Shekar fills a critical gap in the
Persian NLP ecosystem. It offers a practical and user-friendly toolkit that supports both rapid
experimentation and robust deployment across a wide range of use cases.

Amirivojdan. (2025). Shekar: A Python Toolkit for Persian Natural Language Processing. Journal of Open Source Software, 10(114), 9128. 1
https://doi.org/10.21105/joss.09128.


https://orcid.org/0000-0003-3741-3979
https://doi.org/10.21105/joss.09128
https://github.com/openjournals/joss-reviews/issues/9128
https://github.com/amirivojdan/shekar
https://doi.org/10.5281/zenodo.17408443
https://energyenvironment.pnnl.gov/staff/staff_info.asp?staff_num=1834
https://orcid.org/0000-0002-3406-6214
https://github.com/linuxscout
https://github.com/evamaxfield
https://creativecommons.org/licenses/by/4.0/
https://github.com/roshan-research/hazm
https://doi.org/10.21105/joss.09128

The Journal of Open Source Software

Main Components

Shekar provides a set of key functionalities covering essential tasks in Persian natural language
processing. Each functionality is implemented as an independent component that can be
combined into customizable pipelines.

Preprocessing Provides text normalization tools to handle Persian-specific challenges
such as inconsistent diacritics and spacing rules. The normalization steps follow the
orthographic and typographic guidelines defined by The Academy of Persian Language
and Literature and include filters for punctuation, digits, emojis, non-Persian characters,
and corrections for spacing and script variants.

Tokenization Offers word-level, sentence-level, and SentencePiece (Kudo & Richardson,
2018) tokenizers built specifically for Persian text. These tokenizers use Unicode-aware
rules to handle zero-width non-joiners, punctuation boundaries, and other language-
specific edge cases.

Morphological Analysis Includes stemming, lemmatization, inflection, and verb con-
jugation tools. The stemmer applies rule-based suffix removal, while the lemmatizer
combines vocabulary lookups with morphological rules to generate accurate base forms.
The inflector and verb conjugator support the generation of correct word forms and verb
tenses for diverse linguistic applications.

Part-of-Speech (POS) Tagging Provides lightweight transformer-based models for
assigning POS tags to tokens using the Universal Dependencies tagging scheme. The
models are based on a pretrained ALBERT model (Lan et al., 2019) trained on the
large-scale Naab corpus (Sabouri et al., 2022) and fine-tuned on The Persian Universal
Dependency Treebank (PerUDT) (Rasooli et al., 2020) for accurate and efficient POS
tagging.

Named Entity Recognition (NER) Offers models trained on the publicly available Persian
NER dataset and fine-tuned from the same pretrained ALBERT model used for POS
tagging. These models identify entities such as persons, locations, organizations, and
dates in Persian text with high accuracy.

Keyword Extraction Implements algorithms for identifying the most informative terms
and phrases within a text. The default implementation uses the RAKE (Rapid Automatic
Keyword Extraction) algorithm (Rose et al., 2010) for efficient and unsupervised keyword
extraction.

Embeddings Supports both static embeddings (FastText) and contextual embeddings
(ALBERT-based) for representing words and sentences as numerical vectors.

Sentiment and Toxicity Detection The Sentiment Analysis module features an ALBERT-
based transformer model trained on the Snapfood dataset (Farahani et al., 2021) to
classify Persian text as positive or negative. The Toxicity Detection module includes
an offensive language classifier based on Logistic Regression trained on character-level
TF-IDF features using the Naseza dataset (Amirivojdan, 2025). Together, they provide
efficient and accurate tools for sentiment understanding and content moderation in
Persian text.

Spell Checking ldentifies and corrects common spelling errors and spacing mistakes in
Persian text. The spell checker uses a frequency-based approach built on a combined
dictionary constructed from Persian generative lexicon dataset (Eslami et al., 2004) and
unique words extracted from the Naab dataset (Sabouri et al., 2022), cross-checked
against the Moein and Dehkhoda dictionaries for improved accuracy and coverage.

Visualization

Amirivojdan. (2025). Shekar: A Python
https://doi.org/10.21105/joss.09128.

Toolkit for Persian Natural Language Processing. Journal of Open Source Software, 10(114), 9128. 2


https://apll.ir/
https://apll.ir/
https://universaldependencies.org/u/pos/index.html
https://github.com/Text-Mining/Persian-NER
https://github.com/Text-Mining/Persian-NER
https://doi.org/10.21105/joss.09128

The Journal of Open Source Software

Includes a WordCloud class offering an easy way to create visually rich Persian word clouds. It
supports reshaping and right-to-left rendering, Persian fonts, color maps, and custom shape
masks for accurate and elegant visualization of word frequencies.

Figure 1: Word cloud visualization of selected words from Ferdowsi's Persian epic, the Shahnameh,
arranged within the outline of Iran.

Efficiency and Reliability

Shekar is designed with both performance and robustness in mind. All models are 8-bit
integer quantized, exported to ONNX format, and executed using onnxruntime to minimize
dependencies and enable efficient CPU inference on a wide range of hardware, including
low-resource systems.

The codebase is extensively tested across macOS, Linux, and Windows environments, with
continuous integration workflows ensuring consistent behavior on all platforms. Unit tests
cover more than 95 percent of the codebase, helping maintain reliability and stability as the
toolkit evolves.

Availability
Shekar is distributed as a Python package on PyP| under the MIT License, with full source

code, test suite, documentations, pre-trained models, example scripts, and Jupyter notebooks
available on https://github.com/amirivojdan/shekar.

Acknowledgement

The author sincerely thanks Dr. Shaghayegh Yaraghi and Siavash Alizadeh for their continued
support, which provided encouragement throughout the development of this work.

References

Amirivojdan, A. (2025). Naseza: A large-scale dataset for Persian hate speech and offensive
language detection (Version v1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.
17355123

Amirivojdan. (2025). Shekar: A Python Toolkit for Persian Natural Language Processing. Journal of Open Source Software, 10(114), 9128. 3
https://doi.org/10.21105/joss.09128.


https://pypi.org/project/shekar
https://github.com/amirivojdan/shekar
https://doi.org/10.5281/zenodo.17355123
https://doi.org/10.5281/zenodo.17355123
https://doi.org/10.21105/joss.09128

The Journal of Open Source Software

Eslami, M., Atashgah, M. S., Alizadeh, L., & Zandi, T. (2004). Persian generative lexicon.
The First Workshop on Persian Language and Computer. Tehran, Iran.

Farahani, M., Gharachorloo, M., Farahani, M., & Manthouri, M. (2021). Parsbert: Transformer-
based model for Persian language understanding. Neural Processing Letters, 53(6),
3831-3847. https://doi.org/10.1007/s11063-021-10528-4

Jafari, S., Farsi, F., Ebrahimi, N., Sajadi, M. B., & Eetemadi, S. (2025). DadmaTools V2: An
adapter-based natural language processing toolkit for the Persian language. Proceedings of
the 1st Workshop on NLP for Languages Using Arabic Script, 37-43.

Kudo, T., & Richardson, J. (2018). SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv Preprint arXiv:1808.06226.
https://doi.org/10.48550/arXiv.1808.06226

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). ALBERT:
A lite BERT for self-supervised learning of language representations. arXiv Preprint
arXiv:1909.11942. https://doi.org/10.48550/arXiv.1909.11942

Mohtaj, S., Roshanfekr, B., Zafarian, A., & Asghari, H. (2018). Parsivar: A language processing
toolkit for Persian. Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (Lrec 2018).

Rasooli, M. S., Safari, P., Moloodi, A., & Nourian, A. (2020). The Persian dependency
treebank made universal. arXiv Preprint arXiv:2009.10205. https://doi.org/10.48550/
arXiv.2009.10205

Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic keyword extraction from
individual documents. Text Mining: Applications and Theory, 1-20. https://doi.org/10.
1002/9780470689646.ch1

Sabouri, S., Rahmati, E., Gooran, S., & Sameti, H. (2022). Naab: A ready-to-use plug-and-play
corpus for Farsi. arXiv Preprint arXiv:2208.13486. https://doi.org/10.22034 /jaiai.2024.
480062.1016

Amirivojdan. (2025). Shekar: A Python Toolkit for Persian Natural Language Processing. Journal of Open Source Software, 10(114), 9128. 4
https://doi.org/10.21105/joss.09128.


https://doi.org/10.1007/s11063-021-10528-4
https://doi.org/10.48550/arXiv.1808.06226
https://doi.org/10.48550/arXiv.1909.11942
https://doi.org/10.48550/arXiv.2009.10205
https://doi.org/10.48550/arXiv.2009.10205
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.22034/jaiai.2024.480062.1016
https://doi.org/10.22034/jaiai.2024.480062.1016
https://doi.org/10.21105/joss.09128

	Summary
	Statement of need
	Main Components
	Efficiency and Reliability
	Availability
	Acknowledgement
	References

