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Summary
ConstraintHg is a systems modeling kernel used for parsing constraint hypergraphs. Constraint
hypergraphs are a mathematical formalism embodying the constraint-based approach to
representing behavior (Willems, 2007). Any executable model, whether database schema,
plant controller, or ecological forecaster, can be represented as a constraint hypergraph (J.
Morris, Mocko, & Wagner, 2025). Once combined, the unified structure shows how all
elements in the system are related to each other. In addition to representing constraint
hypergraphs, ConstraintHg provides methods for traversing them, equivalent to simulating
the system. While most system simulations must be imperatively defined, ConstraintHg
enables simulations to be constructed declaratively. As a result, knowledge about a system
can be discovered autonomously, transforming a general system representation into an agentic
information provider.

Statement of Need
Every thing in the world is a system: a collection of distinguishable elements that together
espouse some unique behavior (Cellier, 1991). To determine that behavior, scientists describe
systems using models, which express how different elements in a system interact. Models
are ubiquitous: they are used to describe phenomena including weather patterns (Hoffmann
et al., 2023), economic policies (Garicano & Rayo, 2016), ecological events (Wang et al.,
2025) and immunological responses (Sahal et al., 2022). For the behavior of a system to
be understandable, models must adhere to an established framework such as a bond graph
(Borutzky, 2011) or stock and flow diagram (Baez et al., 2023). Information in such frameworks
can be difficult to connect, such as comparing energy in a bond graph to population dynamics in
a stock and flow diagram. These domain-specificities makes integrating models difficult, leaving
scientists, engineers, and decision-makers often unable to discern the complex, multi-physics
interactions.

Approaches to Generalized System Modeling
The problem with general systems modeling is often addressed under the auspices of category
theory1 (Leinster, 2014), which provides the mathematical tools for understanding intersystem
relationships (Hedges, 2018). In this context, tools such as Psymple (Simmons et al., 2025),
Decapodes (L. Morris et al., 2024), ModelingToolkit.jl (Ma et al., 2022), and Modelica
(Mattsson & Elmqvist, 1997) have been created. All of these employ macros to discover
mathematical relationships between system entities, allowing for the simulation of dynamic
systems.

1Examples of categorical approaches to general systems modeling include (Ames, 2006; Baez & Stay, 2010;
Mabrok & Ryan, 2017; Robinson, 2017; Schultz & Spivak, 2017; Zardini et al., 2021).
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Constraint hypergraphs (CHGs), conversely, are a functional representation of a system where
the system solution is composed from elements in the model rather than applied by external
solvers. This allows systems to be represented without requiring a proscriptive interface. A
CHG is a mathematical structure that represent the state variables of a system as nodes in a
graph and the behaviors of the system as directed hyperedges mapping between these nodes
(J. Morris, Mocko, & Wagner, 2025). Eeach hyperedge representing a function constraining
the value of the target node. The generality of this formalism is able to flexibly capture the
intracacies of any system. Consequently, independent models defined across domains, scales,
or even different software platforms can all be reconciled into a cohesive structure from which
behavior can be interpreted holistically.

System Simulation
A model is only as useful as it is simulatable. Simulation is the use of a model to identify
unobserved information. For example, a person observing someone walk into a building with a
wet umbrella might infer that it is raining outside. This inference is the simulation of a mental
model associating wet umbrellas with precipitation. Simulation can be understood as a function,
mapping a set of known inputs (the wetness of the umbrella) to the unobserved output (the
current weather). Traditional system simulation is imperative, where the modeler specifies
how the explicit processes by which the transformation should be conducted. Imperative
simulations are difficult to adapt; for instance, a model might define relationships mapping
wetness to precipitation, cloud cover, transit delay, temperature, etc. Describing these
imperatively requires a unique sequence to be explicitly defined for each pairing of inputs
to outputs. For a system with 𝑛 variables, the maximum limit of simulation functions that
could be defined is 𝑛 (2𝑛−1 − 1). This exponential cap makes it untenable to fully describe all
imperative simulations for models with even a moderate number of states. CHGs address this
by representing a system graphically such that global simulations can be created by combining
local interactions. This drastically reduces the complexity of the model by avoiding redundant
redefinitions.

While many packages are provided for representing hypergraphs, such as XGI (Landry et al.,
2023) or HyperNetX (Praggastis et al., 2024), ConstraintHg is the first library for performing
declarative simulation using a CHG. It does this by employing a breadth-first search (BFS)
algorithm that can autonomously construct an optimal simulation process between arbitrarily
paired input and output variables. In addition to finding simple paths, the search algorithm
is able to unravel cycles in the hypergraph by performing parallel searches on cycle branches
to ensure an optimal chain is found. This allows ConstraintHg to simlulate dynamic systems,
where the states of a system go through some type of repeated change.

In addition to dealing with dynamic systems, ConstraintHg also provides mechanisms for
dealing with partial models, such as when a modeler can provide relations for only a subset
of a state’s values. For example, while an umbrella being wet might imply that it is raining,
if the umbrella is not wet, no prediction can be made as to current weather. These partial
relations become model validity frames which, while essential to systems modeling, can be
difficult to capture in a modeling framework (Malak & Paredis, 2004). ConstraintHg captures
a validity frame as a boolean function which is conditional to the parser including the edge in
a simulation path. This feature allows modelers to specify the conditions in which a model
can be relied on, an important aspect of collaborative modeling where users of a model are
often unfamiliar with its limitations.

Related Research
ConstraintHg is actively being employed in work deriving the mathematical foundations of
digital twins (J. Morris, Louis, et al., 2025), as well as establishing executable digital threads for
model-based enterprises (J. Morris, Mocko, Wagner, & Ramnath, 2025). It has been employed
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to modeling a naval microgird (J. Morris, 2025), an elevator lift (J. Morris, Mocko, & Wagner,
2025), a kinematically-constrained crankshaft (J. Morris, Mocko, Wagner, & Ramnath, 2025),
and an additive manufacturing machine.
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