
Plaquette: An Object-Oriented Framework for
Embedded Signal Processing in Interactive Media

Sofian Audry 1* and Thomas Ouellet Fredericks 2*

1 Université du Québec à Montréal, Canada 2 Collège Montmorency, Canada * These authors
contributed equally.

DOI: 10.21105/joss.09144

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @WarmCyan
• @timonmerk

Submitted: 30 September 2025
Published: 10 November 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Plaquette is an object-oriented C++ framework for interactive media on embedded systems,
supporting a wide range of platforms including AVR, ARM, ESP32, SAMD, and STM32. It
provides a signal-centric architecture and a suite of modular abstractions (oscillators, filters,
units, and scheduling engines) that simplify the design of time-based behaviors. Its expressive
syntax allows fast prototyping with multiple sensors, actuators, and real-time processes, enabling
researchers as well as creative practitioners to experiment with and design complex physical
computing systems.

Beyond its technical contributions, Plaquette serves as a bridge between scientific research and
creative practice. Its application to interdisciplinary projects involving affective biofeedback
and robotic behaviors demonstrates how the framework’s flexible and robust infrastructure
supports creativity and experimentation across interactive media.

Statement of Need
Plaquette is designed for research—specifically, practice-based research (Candy & Edmonds,
2018) and research-creation (Loveless, 2019)—in embedded interactive media, with applications
ranging from affective computing and digital lutherie to robotic art, interactive installation,
connected objects, and performance. The Arduino (Banzi & Shiloh, 2022) open-source platform
for physical computing anchors a large and active ecosystem; it remains the go-to environment
for artists, makers, and researchers working with embedded interactive media. Its accessibility,
community, libraries, and hardware options have made it the most popular microcontroller
platform worldwide. Yet, Arduino’s core library is not optimized for real-time signal processing:
it lacks an object-oriented design, provides limited abstractions for managing concurrent events,
and often requires manipulating raw numerical values, making interaction design unintuitive
and hindering expressive experimentation.

In contrast, dataflow software popular within scientific and creative communities working
with real-time media (such as Pure Data, Max, and TouchDesigner) provide powerful models
for composing with signals, but are too memory- and CPU-intensive to run on constrained
hardware. Similarly, scientific tools such as Python’s NumPy/SciPy, Matlab, or R, offer rich
signal analysis tools, but are not designed for real-time processing on embedded devices.

Several Arduino libraries specialize in particular aspects of real-time signal processing such as
filtering (e.g., arduinoFFT, DataTome, FIR-filter), generating waveforms (e.g., FunctionGener-
ator, SyncWaveformsLib), or timing (e.g., arduino-timer, Chrono, SoftTimer). While these
tools are effective within their domains, they address isolated functionalities and do not share
a common programming model. Finally, Arduino’s hardware timers provide precise low-level
control but require complex configuration of prescalers, registers, and interrupt handlers. These

Audry, & Fredericks. (2025). Plaquette: An Object-Oriented Framework for Embedded Signal Processing in Interactive Media. Journal of Open
Source Software, 10(115), 9144. https://doi.org/10.21105/joss.09144.

1

https://orcid.org/0000-0001-6621-6427
https://orcid.org/0009-0004-8587-9508
https://ror.org/002rjbv21
https://ror.org/05kqg2j33
https://doi.org/10.21105/joss.09144
https://github.com/openjournals/joss-reviews/issues/9144
https://github.com/SofaPirate/Plaquette/
https://doi.org/10.5281/zenodo.17544843
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/WarmCyan
https://github.com/timonmerk
https://creativecommons.org/licenses/by/4.0/
https://arduino.cc
https://docs.arduino.cc/libraries/arduinofft/
https://docs.arduino.cc/libraries/datatome/
https://docs.arduino.cc/libraries/fir-filter/
https://docs.arduino.cc/libraries/functiongenerator/
https://docs.arduino.cc/libraries/functiongenerator/
https://docs.arduino.cc/libraries/syncwaveformslib/
https://docs.arduino.cc/libraries/arduino-timer/
https://docs.arduino.cc/libraries/chrono/
https://docs.arduino.cc/libraries/softtimer/
https://doi.org/10.21105/joss.09144


limitations of existing Arduino libraries and hardware timers hamper creative expression and
experimentation.

Plaquette addresses these gaps by bringing the expressive power of dataflow signal-based
programming into a lightweight object-oriented framework optimized for microcontrollers
(i.e., requiring minimal CPU and memory usage). It enables intuitive handling of signals,
providing efficient implementations of core data processing functions such as peak detection,
normalization, scaling, and smoothing (low-pass), all under a unified framework. This enables
researchers in art and science to focus on experimentation and expressivity while ensuring
accurate and reliable real-time performance on resource-constrained platforms. Additional
functionalities that expand on Plaquette’s core, such as advanced data filtering and event
management, can be implemented as external Plaquette libraries.

The framework provides a strong foundation for workshop-based research-creation projects,
where participants often have diverse levels of technical skills. Its accessibility ensures that
beginners can quickly grasp and apply core concepts, while its efficient, expressive, and
extensible architecture supports the needs of advanced users. This makes it particularly well-
suited for collaborative prototyping in media arts, design, and human-computer interaction,
where embodied and situated practices require adaptable tools.

Plaquette has already supported a number of public research projects. It was used to improve
real-time physiological signal processing as part of the BioData library for affective biofeedback,
supporting creative applications in music and performance (Gee, 2023), and in studies of
electrodermal activity (Hagler et al., 2022). It was integrated at the core of the MisBKit,
a robotic kit enabling research on object behaviors (Bianchini et al., 2015). It was also
employed for signal processing and robotic expression in Morphosis, an installation featuring
three spheroid robots that learn in real-time using reinforcement learning (Audry et al., 2020;
Audry, 2023). These examples illustrate the framework’s role not only as a technical tool but
also as a catalyst for interdisciplinary research.

Functionality and Design Overview
The core of Plaquette is organized around two interdependent abstractions called units and
engines that provide a coherent structure for building complex, real-time interactive systems on
microcontrollers. Units are modular building blocks that encapsulate behaviors such as sensing,
generating, filtering, or actuating. Engines operate as conductors, managing initialization and
timing of units so that they execute consistently without blocking or interruptions.

All units implement a unified interface consisting of a single input and a single output function.
This design makes it possible to chain units together in a dataflow-like manner using a special
operator (>>), where the output of one unit is sent as input to another. This signal-centric
approach allows developers to work with flows of information rather than low-level procedural
code.

The framework includes a set of core unit types:

• Base units: basic analog and binary inputs and outputs
• Generators: generative source signals such as square, triangle, and sine waves, as well as

ramps
• Timing units: scheduling and temporal control units such as timers and metronomes
• Filters: real-time signal transformations such as min-max scaling, normalizing, and

detecting peaks
• Fields: spatial functions sampled at fractional positions to plot, shape, or transform

signals across space

Engines and units have a low memory footprint, with static allocation at compile time that
prevents dynamic allocation and fragmentation. In particular, signal-processing units such

Audry, & Fredericks. (2025). Plaquette: An Object-Oriented Framework for Embedded Signal Processing in Interactive Media. Journal of Open
Source Software, 10(115), 9144. https://doi.org/10.21105/joss.09144.

2

https://docs.arduino.cc/libraries/biodata/
https://misbkit.ensadlab.fr
https://doi.org/10.21105/joss.09144


as min-max scaling and normalization use exponential moving averages rather than circular
buffers, ensuring low and predictable memory usage.

Examples
The following program chains an analog input through a min-max scaling filter to bring it to
full range, then uses the input value to influence the period of oscillation of an LED using a
sine wave.

#include <Plaquette.h>

AnalogIn input{A0}; // analog input on pin A0

AnalogOut led{9}; // PWM-controlled LED on pin 9

MinMaxScaler scaler{}; // min-max scaler

Wave oscillator{SINE}; // sine wave

void begin() {}

void step() {

input >> scaler; // rescale input to full range [0, 1]

oscillator.period(scaler.mapTo(1, 10)); // set period from 1 to 10 seconds

oscillator >> led; // send oscillator value to LED

}

This program reacts to peaks in the incoming signal by triggering a sudden movement (ramp)
in a servo motor. The peak detector triggers in response to outliers after signal normalization,
using an event callback to start the ramp. The normalization is calibrated over a sliding time
window, smoothly re-calibrating itself in response to changes in the input signal over time.

#include <Plaquette.h>

AnalogIn input{A0}; // analog input on pin A0

ServoOut servo{9}; // servomotor connected on pin 9

Normalizer normalizer{0, 1}; // normalizes to N(0, 1)

PeakDetector peak{1.5}; // detects outliers at 1.5 times stddev

Ramp ramp{2.0}; // ramp with 2 seconds duration

void begin() {

normalizer.timeWindow(60); // 60 seconds calibration sliding time window

peak.onBang([](){ ramp.start(); }); // on peak detection: restart ramp

}

void step() {

input >> normalizer >> peak; // chain-process input signal

ramp >> servo; // send ramp value to servo motor

}

Acknowledgements
This work was partially supported by the Natural Sciences and Engineering Research Council
of Canada, the Social Sciences and Humanities Research Council of Canada, the Fonds de
Recherche du Québec — Société et Culture, the Canada Council for the Arts, MITACS, and
the Society for Arts and Technology. We thank our collaborators and colleagues for supporting
the project, in particular Luana Belinsky, Marianne Fournier, Erin Gee, Matthew Loewen, and
Chris Salter.

Audry, & Fredericks. (2025). Plaquette: An Object-Oriented Framework for Embedded Signal Processing in Interactive Media. Journal of Open
Source Software, 10(115), 9144. https://doi.org/10.21105/joss.09144.

3

https://doi.org/10.21105/joss.09144


References
Audry, S. (2023). Choreomata. In R. A. Trillo & M. Poliks, Choreomata (1st ed., pp. 283–307).

Chapman and Hall/CRC. https://doi.org/10.1201/9781003312338-16

Audry, S., Dumont-Gagné, R., & Scurto, H. (2020, December). Behaviour aesthetics of
reinforcement learning in a robotic art installation. 4th NeurIPS Workshop on Machine
Learning for Creativity and Design. https://hal.archives-ouvertes.fr/hal-03100907

Banzi, M., & Shiloh, M. (2022). Getting started with Arduino: The open source electronics
prototyping platform. Make Community, LLC. ISBN: 978-1-68045-693-6

Bianchini, S., Bourganel, R., Quinz, E., Levillain, F., & Zibetti, E. (2015). MisBehavioral
objects. In D. Bihanic (Ed.), Empowering users through design: Interdisciplinary studies
and combined approaches for technological products and services (pp. 129–152). Springer
International Publishing. https://doi.org/10.1007/978-3-319-13018-7_8

Candy, L., & Edmonds, E. (2018). Practice-based research in the creative arts: Foundations
and futures from the front line. Leonardo, 51(1, 1), 63–69. https://doi.org/10.1162/
LEON_a_01471

Gee, E. M. (2023). The BioSynth—an affective biofeedback device grounded in feminist
thought. 479–485. https://doi.org/10.5281/zenodo.11189254

Hagler, J., Kim, C., Kateb, P., Yeu, J., Gagnon-Lafrenais, N., Gee, E., Audry, S., & Cicoira,
F. (2022). Flexible and stretchable printed conducting polymer devices for electrodermal
activity measurements. Flexible and Printed Electronics, 7 (1), 014008. https://doi.org/10.
1088/2058-8585/ac4d0f

Loveless, N. (2019). How to make art at the end of the world: A manifesto for research-creation.
Duke University Press. https://doi.org/10.1215/9781478004646

Audry, & Fredericks. (2025). Plaquette: An Object-Oriented Framework for Embedded Signal Processing in Interactive Media. Journal of Open
Source Software, 10(115), 9144. https://doi.org/10.21105/joss.09144.

4

https://doi.org/10.1201/9781003312338-16
https://hal.archives-ouvertes.fr/hal-03100907
https://doi.org/10.1007/978-3-319-13018-7_8
https://doi.org/10.1162/LEON_a_01471
https://doi.org/10.1162/LEON_a_01471
https://doi.org/10.5281/zenodo.11189254
https://doi.org/10.1088/2058-8585/ac4d0f
https://doi.org/10.1088/2058-8585/ac4d0f
https://doi.org/10.1215/9781478004646
https://doi.org/10.21105/joss.09144

	Summary
	Statement of Need
	Functionality and Design Overview
	Examples
	Acknowledgements
	References

