
solposx: A Python package for determining solar
position and atmospheric refraction
Adam R. Jensen 1*¶, Ioannis Sifnaios 1*, Kevin S. Anderson 2*, and
Echedey Luis 3

1 Technical University of Denmark (DTU), Denmark 2 Sandia National Laboratories, USA 3
Universidad Politécnica de Madrid (UPM), Spain ¶ Corresponding author * These authors
contributed equally.

DOI: 10.21105/joss.09239

Software
• Review
• Repository
• Archive

Editor: Kyle Niemeyer
Reviewers:

• @jranalli
• @kurt-rhee

Submitted: 22 September 2025
Published: 10 November 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
solposx is a Python package of reference algorithms for calculating the sun’s position and
atmospheric refraction. The package includes 11 solar position algorithms and 6 refraction
models from the past 50 years. All functions follow a standardized design pattern, making
it easy to compare different algorithms. The provided algorithm implementations have been
thoroughly vetted, making the package a valuable research tool and a reliable reference for
implementing solar position algorithms in other programming languages or applications.

Statement of need
Calculating the sun’s position is a fundamental task in solar energy research, for example, when
modeling solar irradiance, estimating the yield of photovoltaic (PV) systems, or determining
rotation angles for solar trackers. For this reason, the literature contains numerous solar
position algorithms (SPAs) (Blanco et al., 2020; Michalsky, 1988; Reda & Andreas, 2004;
Spencer, 1971; Walraven, 1978).

Existing SPAs vary in accuracy, computational speed, and period of validity. These characteris-
tics are usually tradeoffs, and thus the choice of algorithm depends on the specific application.
Some algorithms have been developed to be computationally lightweight for use in solar tracker
microcontrollers, and as a tradeoff, are inaccurate for past and future years. In contrast,
high-accuracy algorithms may consist of several hundred mathematical operations to retain
validity for hundreds or even thousands of years. One example of such an algorithm is the SPA
from NREL, whose high accuracy and extensive period of validity come at the cost of being
computationally expensive and impractical to implement.

Solar position algorithms are already available in several open source software packages, such
as the PV modeling software packages pvlib-python (Anderson et al., 2023) and pysolar

(Stafford, 2007), the astronomy packages pyephem (Rhodes, 2011) and skyfield (Rhodes,
2019), and the sun physics package sunpy (The SunPy Community et al., 2020). These
packages are tailored to very specific purposes and only contain one or a few different solar
position algorithms. Consequently, there are many solar position algorithms for which an
open source reference implementation is not available. This makes it difficult to evaluate the
tradeoffs of the various solar position algorithms, which is necessary in order to make informed
decisions on which algorithm to choose for a specific application.

SolarPositionX (solposx) is a Python package for calculating solar position angles and
atmospheric refraction corrections. The package provides reference implementations of a large
number of solar position and refraction correction algorithms spanning 50 years of the scientific

Jensen et al. (2025). solposx: A Python package for determining solar position and atmospheric refraction. Journal of Open Source Software,
10(115), 9239. https://doi.org/10.21105/joss.09239.

1

https://orcid.org/0000-0002-5554-9856
https://orcid.org/0000-0003-0933-2952
https://orcid.org/0000-0002-1166-7957
https://orcid.org/0009-0009-0253-267X
https://ror.org/04qtj9h94
https://ror.org/01apwpt12
https://ror.org/03n6nwv02
https://doi.org/10.21105/joss.09239
https://github.com/openjournals/joss-reviews/issues/9239
https://github.com/pvlib/solposx
https://doi.org/10.5281/zenodo.17565594
https://niemeyer-research-group.github.io
https://orcid.org/0000-0003-4425-7097
https://github.com/jranalli
https://github.com/kurt-rhee
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.09239


literature. The SPAs range from simple algorithms based on fitted equations to research-
grade astronomy algorithms based on complex ephemerides. As of solposx version v1.0.0,
the package includes 11 different solar position algorithms and 6 algorithms for estimating
atmospheric refraction. The “X” in solposx refers to the modular design of the package,
allowing users to seamlessly switch between a variety of algorithms depending on their desired
needs. An overview of the modules and functions is provided in Figure 1.

The solar position functions follow a standard pattern, taking three main input parameters
(times, latitude, and longitude) and returning a Pandas DataFrame with solar elevation, zenith,
and azimuth angles. This makes it extremely easy to compare and switch between SPAs,
regardless of whether the functions execute code from within the solposx package, rely on
external Python packages (which is the case for the skyfield and sg2 functions), or retrieve
data remotely (which is the case for NASA’s Horizons service (NASA Jet Propulsion Laboratory,
California Institute of Technology, 2025)). The refraction correction models also follow a
standardized pattern where the main input is an array or series of solar elevation angles and
the output is the atmospheric refraction correction angles.

Figure 1: Overview of modules and functions in the solposx package.

The package relies heavily on the Pandas Python package (McKinney, 2010), due to its
convenient DatetimeIndex class. The reason for this choice is that it offers a very convenient
way to handle timestamps, including timezone information and conversion between timezones.

Besides direct applications of calculating solar position, one of the main use cases of the package
is providing verified reference implementations to users who are implementing algorithms in
other languages or applications. Access to verified reference implementations is an essential
tool as solar position algorithms tend to be sensitive to small implementation details. For
example, a small detail such as using an incorrect rounding convention, e.g., rounding towards
zero vs. rounding down, can result in solar position angles being off by more than 0.1 degrees,
an error much larger than the claimed accuracy of most SPAs. Such subtle but serious
implementation errors are, in the authors’ experience, almost inevitable when implementing
SPAs, creating a need for correct and accessible reference implementations. With access
to vetted and tested reference implementations of these SPAs, users can generate reliable
test values for validating and debugging their own implementations. Notably, the solposx

package has already been used for research purposes, most recently in a study comparing the
performance of solar position algorithms for PV applications (Jensen et al., 2025).

solposx is developed openly on GitHub and released under a BSD 3-clause license, allowing
permissive use with attribution. The package is extensively tested, ensuring that the algorithms
work for a large range of inputs and remain consistent. In general, solposx has been developed
following modern best practices for packaging, documentation, and testing. Additional
algorithms are expected to be added as new algorithms are developed or if additional historical

Jensen et al. (2025). solposx: A Python package for determining solar position and atmospheric refraction. Journal of Open Source Software,
10(115), 9239. https://doi.org/10.21105/joss.09239.

2

https://doi.org/10.21105/joss.09239


algorithms of interest are identified.

Acknowledgements
Adam R. Jensen and Ioannis Sifnaios were supported by the Danish Energy Agency through
grant no. 134232-510237.

This work was supported in part by the U.S. Department of Energy’s Office of Energy Efficiency
and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number
52788. Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. This paper describes objective technical results
and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States
Government.

References
Anderson, K. S., Hansen, C. W., Holmgren, W. F., Jensen, A. R., Mikofski, M. A., & Driesse,

A. (2023). Pvlib python: 2023 project update. Journal of Open Source Software, 8(92),
5994. https://doi.org/10.21105/joss.05994

Blanco, M. J., Milidonis, K., & Bonanos, A. M. (2020). Updating the PSA sun position
algorithm. Solar Energy, 212, 339–341. https://doi.org/10.1016/j.solener.2020.10.084

Jensen, A. R., Sifnaios, I., & Anderson, K. S. (2025). Solar Position Algorithms. https:
//pvpmc.sandia.gov/download/8943/?tmstv=1754599268

McKinney, Wes. (2010). Data Structures for Statistical Computing in Python. In Stéfan van
der Walt & Jarrod Millman (Eds.), Proceedings of the 9th Python in Science Conference
(pp. 56–61). https://doi.org/10.25080/Majora-92bf1922-00a

Michalsky, J. J. (1988). The astronomical almanac’s algorithm for approximate solar position
(1950–2050). Solar Energy, 40(3), 227–235. https://doi.org/10.1016/0038-092x(88)
90045-x

NASA Jet Propulsion Laboratory, California Institute of Technology. (2025). Horizons - solar
system dynamics. https://ssd.jpl.nasa.gov

Reda, I., & Andreas, A. (2004). Solar position algorithm for solar radiation applications. Solar
Energy, 76(5), 577–589. https://doi.org/10.1016/j.solener.2003.12.003

Rhodes, B. (2011). PyEphem: Astronomical Ephemeris for Python. Astrophysics Source Code
Library, ascl:1112.014. https://rhodesmill.org/pyephem/

Rhodes, B. (2019). Skyfield: High precision research-grade positions for planets and Earth
satellites generator. Astrophysics Source Code Library, record ascl:1907.024.

Spencer, J. (1971). Fourier series representation of the position of the sun. Search, 2(5), 172.

Stafford, B. (2007). Pysolar: Python libraries for simulating solar irradiation. https://pypi.
org/project/pysolar/

The SunPy Community, Barnes, W. T., Bobra, M. G., Christe, S. D., Freij, N., Hayes,
L. A., Ireland, J., Mumford, S., Perez-Suarez, D., Ryan, D. F., Shih, A. Y., Chanda,
P., Glogowski, K., Hewett, R., Hughitt, V. K., Hill, A., Hiware, K., Inglis, A., Kirk,
M. S. F., … Dang, T. K. (2020). The SunPy project: Open source development and
status of the version 1.0 core package. The Astrophysical Journal, 890, 68–68. https:

Jensen et al. (2025). solposx: A Python package for determining solar position and atmospheric refraction. Journal of Open Source Software,
10(115), 9239. https://doi.org/10.21105/joss.09239.

3

https://doi.org/10.21105/joss.05994
https://doi.org/10.1016/j.solener.2020.10.084
https://pvpmc.sandia.gov/download/8943/?tmstv=1754599268
https://pvpmc.sandia.gov/download/8943/?tmstv=1754599268
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1016/0038-092x(88)90045-x
https://doi.org/10.1016/0038-092x(88)90045-x
https://ssd.jpl.nasa.gov
https://doi.org/10.1016/j.solener.2003.12.003
https://rhodesmill.org/pyephem/
https://pypi.org/project/pysolar/
https://pypi.org/project/pysolar/
https://doi.org/10.3847/1538-4357/ab4f7a
https://doi.org/10.3847/1538-4357/ab4f7a
https://doi.org/10.21105/joss.09239


//doi.org/10.3847/1538-4357/ab4f7a

Walraven, R. (1978). Calculating the position of the sun. Solar Energy, 20(5), 393–397.
https://doi.org/10.1016/0038-092X(78)90155-X

Jensen et al. (2025). solposx: A Python package for determining solar position and atmospheric refraction. Journal of Open Source Software,
10(115), 9239. https://doi.org/10.21105/joss.09239.

4

https://doi.org/10.3847/1538-4357/ab4f7a
https://doi.org/10.3847/1538-4357/ab4f7a
https://doi.org/10.3847/1538-4357/ab4f7a
https://doi.org/10.1016/0038-092X(78)90155-X
https://doi.org/10.21105/joss.09239

	Summary
	Statement of need
	Acknowledgements
	References

