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Summary
solposx is a Python package of reference algorithms for calculating the sun’s position and
atmospheric refraction. The package includes 11 solar position algorithms and 6 refraction
models from the past 50 years. All functions follow a standardized design pattern, making
it easy to compare different algorithms. The provided algorithm implementations have been
thoroughly vetted, making the package a valuable research tool and a reliable reference for
implementing solar position algorithms in other programming languages or applications.

Statement of need
Calculating the sun’s position is a fundamental task in solar energy research, for example, when
modeling solar irradiance, estimating the yield of photovoltaic (PV) systems, or determining
rotation angles for solar trackers. For this reason, the literature contains numerous solar
position algorithms (SPAs) (Blanco et al., 2020; Michalsky, 1988; Reda & Andreas, 2004;
Spencer, 1971; Walraven, 1978).

Existing SPAs vary in accuracy, computational speed, and period of validity. These characteris-
tics are usually tradeoffs, and thus the choice of algorithm depends on the specific application.
Some algorithms have been developed to be computationally lightweight for use in solar tracker
microcontrollers, and as a tradeoff, are inaccurate for past and future years. In contrast,
high-accuracy algorithms may consist of several hundred mathematical operations to retain
validity for hundreds or even thousands of years. One example of such an algorithm is the SPA
from NREL, whose high accuracy and extensive period of validity come at the cost of being
computationally expensive and impractical to implement.

Solar position algorithms are already available in several open source software packages, such
as the PV modeling software packages pvlib-python (Anderson et al., 2023) and pysolar

(Stafford, 2007), the astronomy packages pyephem (Rhodes, 2011) and skyfield (Rhodes,
2019), and the sun physics package sunpy (The SunPy Community et al., 2020). These
packages are tailored to very specific purposes and only contain one or a few different solar
position algorithms. Consequently, there are many solar position algorithms for which an
open source reference implementation is not available. This makes it difficult to evaluate the
tradeoffs of the various solar position algorithms, which is necessary in order to make informed
decisions on which algorithm to choose for a specific application.

SolarPositionX (solposx) is a Python package for calculating solar position angles and
atmospheric refraction corrections. The package provides reference implementations of a large
number of solar position and refraction correction algorithms spanning 50 years of the scientific
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literature. The SPAs range from simple algorithms based on fitted equations to research-
grade astronomy algorithms based on complex ephemerides. As of solposx version v1.0.0,
the package includes 11 different solar position algorithms and 6 algorithms for estimating
atmospheric refraction. The “X” in solposx refers to the modular design of the package,
allowing users to seamlessly switch between a variety of algorithms depending on their desired
needs. An overview of the modules and functions is provided in Figure 1.

The solar position functions follow a standard pattern, taking three main input parameters
(times, latitude, and longitude) and returning a Pandas DataFrame with solar elevation, zenith,
and azimuth angles. This makes it extremely easy to compare and switch between SPAs,
regardless of whether the functions execute code from within the solposx package, rely on
external Python packages (which is the case for the skyfield and sg2 functions), or retrieve
data remotely (which is the case for NASA’s Horizons service (NASA Jet Propulsion Laboratory,
California Institute of Technology, 2025)). The refraction correction models also follow a
standardized pattern where the main input is an array or series of solar elevation angles and
the output is the atmospheric refraction correction angles.

Figure 1: Overview of modules and functions in the solposx package.

The package relies heavily on the Pandas Python package (McKinney, 2010), due to its
convenient DatetimeIndex class. The reason for this choice is that it offers a very convenient
way to handle timestamps, including timezone information and conversion between timezones.

Besides direct applications of calculating solar position, one of the main use cases of the package
is providing verified reference implementations to users who are implementing algorithms in
other languages or applications. Access to verified reference implementations is an essential
tool as solar position algorithms tend to be sensitive to small implementation details. For
example, a small detail such as using an incorrect rounding convention, e.g., rounding towards
zero vs. rounding down, can result in solar position angles being off by more than 0.1 degrees,
an error much larger than the claimed accuracy of most SPAs. Such subtle but serious
implementation errors are, in the authors’ experience, almost inevitable when implementing
SPAs, creating a need for correct and accessible reference implementations. With access
to vetted and tested reference implementations of these SPAs, users can generate reliable
test values for validating and debugging their own implementations. Notably, the solposx

package has already been used for research purposes, most recently in a study comparing the
performance of solar position algorithms for PV applications (Jensen et al., 2025).

solposx is developed openly on GitHub and released under a BSD 3-clause license, allowing
permissive use with attribution. The package is extensively tested, ensuring that the algorithms
work for a large range of inputs and remain consistent. In general, solposx has been developed
following modern best practices for packaging, documentation, and testing. Additional
algorithms are expected to be added as new algorithms are developed or if additional historical
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algorithms of interest are identified.
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