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Summary
Machine Learning (ML) workflows live or die by their data‑preprocessing steps. In Python,
these steps are often scattered across ad‑hoc scripts or opaque scikit-learn snippets that are
hard to read, audit, or reuse. ReciPies provides a concise, human‑readable, and reproducible
way to declare, execute, and share preprocessing pipelines following configuration-as-code
principles. It lowers the cognitive load of feature engineering, improves reproducibility, and
makes methodological choices explicit for researchers, engineering teams, and peer reviewers.

Statement of need
Transparent and reproducible preprocessing remains a weak link in many scientific ML studies.
The consequences are (1) confounded research results (Gundersen & Kjensmo, 2018), (2)
complicated peer review (Semmelrock et al., 2025), and (3) poor reuse (Samuel et al., 2021).
Researchers and engineers working with longitudinal regulated data (e.g., in energy production,
health, finance, or environmental monitoring) in particular need pipelines they can audit,
serialize, and hand to collaborators without reverse‑engineering a tangle of imperative code.
The current lack of reproducibility has been documented extensively in the literature (Gundersen
& Kjensmo, 2018; Johnson et al., 2017; Kelly et al., 2019; Raff, 2019; Semmelrock et al.,
2025); moreover, scientific venues have begun to address this issue (Various, 2024).

Related work
Scikit-learn provides Pipeline and ColumnTransformer, along with a rich estimator ecosystem
(Pedregosa et al., 2011), but lacks role-based variable grammar, limited human readability, and
awkward serialization. Feature-engine (Galli, 2021), pyjanitor (J. et al., 2019), or scikit-lego
(Warmerdam et al., 2025) add helpful transformers and data-cleaning verbs. However, none
provide a unified, role-centric abstraction with backend flexibility. The R recipes package
established the prep/bake pattern and a clean grammar for preprocessing (Kuhn et al., 2024).
ReciPies brings these ideas to Python, extends them with backend-agnostic execution on
Pandas and Polars, and emphasizes configuration-as-code artifacts suitable for a wide range of
machine learning pipelines.

Design and implementation
ReciPies adopts a tidy, stepwise recipe interface that emphasizes semantic roles over
column names and a strict separation of fitting from application. Transformations are
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declared on roles such as predictor, outcome, identifier, or timestamp. Recipes are prepped
on training data and baked on new data to prevent leakage. Each step is inspectable,
versionable, and serializable to JSON or YAML for provenance and review. Steps are
composable with explicit state and deterministic behavior given fixed inputs and seeds.
ReciPies supports both Pandas (McKinney, 2010), which is widely adopted in the ML
community, and the more recent Polars (Vink et al., 2024), which offers increased performance.
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A typical workflow 1) loads a Pandas or Polars training DataFrame, 2) wraps it
as an Ingredients object that records role metadata, 3) defines a Recipe from
Steps operating on columns selected based on roles by Selectors, 4) preps the
recipe on the training split to estimate parameters, and 5) bakes it on the held-
out split to apply those parameters without leakage. The baked outputs feed
downstream modeling and evaluation. Figure 1 gives an overview of this workflow.
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import polars as pl
from sklearn.model_selection import train_test_split
from sklearn.impute import MissingIndicator
from recipies import Ingredients, Recipe
from recipies.selector import has_role
from recipies.step import StepImputeFill, StepScale, StepSklearn

# Load and split Physionet Computing in Cardiology Challenge 2019 dataset
df = pl.read_csv("Physionet_CiCC_2019.csv", sep="|")
df_train, df_test = train_test_split(df, test_size=0.2, random_state=42)

# Define ingredients (training set + roles)
roles = {"outcomes": ["SepsisLabel"], "predictors": ["Age", "HR", "Temp"], "groups": ["PatientID"], 
"sequences": ["ICULOS"]}
ing = Ingredients(df_train, roles=roles)

# Define the recipe for processing the ingredients (e.g., scaling and imputation)
rec = Recipe(ing)
rec.add_step(StepScale())
rec.add_step(StepSklearn(MissingIndicator(features="all"), sel=has_role("predictor")))
rec.add_step(StepImputeFill(strategy="forward"), sel=has_role("predictor"))

# Prepare (=fit) recipe on training data and apply the same recipe to the test set
df_train = rec.prep()
df_test = rec.bake(df_test)

ReciPies

VSCode Python Tweet Export

Figure 2 demonstrates usage on the PhysioNet Computing in Cardiology 2019 dataset (Reyna
et al., 2020), including role assignment, temporal imputation, and normalization. The prepped
recipe serializes to JSON or YAML, and reloading the artifact reproduces the transforms across
supported platforms.

Complete code and interactive notebooks are available in the project documentation. ReciPies

also provides a benchmarking suite comparing the performance of different preprocessing steps
on (generated) data. ReciPies is already used as the bedrock of reproducible pipelines in Yet
Another ICU Benchmark (Van de Water et al., 2024) The adaptable, configurable code modules
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that make extensive use of ReciPies can be found here; this demonstrates that ReciPies can
be used for arbitrary research domains. Our work shows that there is no need to sacrifice
readability for performance, nor flexibility for simplicity. We encourage the development of
domain-specific step libraries and integration patterns that can benefit the broader ecosystem.

Future steps
Our first step is to expand the library of Polars-native steps to fully leverage its columnar
execution model, particularly for time-series operations and large-scale aggregations, where
Polars shows significant performance advantages. Second, we aim to integrate with ML
versioning systems to streamline the transition from research to production.
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