
ReciPies: A Lightweight Data Transformation Pipeline
for Reproducible ML
Robin P. van de Water 1,2¶, Hendrik Schmidt 1, and Patrick
Rockenschaub 3

1 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany 2 Hasso Plattner Institute for
Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York City, NY, USA 3
Innsbruck Medical University, Innsbruck, Austria ¶ Corresponding author

DOI: 10.21105/joss.09261

Software
• Review
• Repository
• Archive

Editor: Chris Vernon
Reviewers:

• @simonprovost
• @panagiotisanagnostou

Submitted: 24 July 2025
Published: 05 January 2026

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Machine Learning (ML) workflows live or die by their data‑preprocessing steps. In Python,
these steps are often scattered across ad‑hoc scripts or opaque scikit-learn snippets that are
hard to read, audit, or reuse. ReciPies provides a concise, human‑readable, and reproducible
way to declare, execute, and share preprocessing pipelines following configuration-as-code
principles. It lowers the cognitive load of feature engineering, improves reproducibility, and
makes methodological choices explicit for researchers, engineering teams, and peer reviewers.

Statement of need
Transparent and reproducible preprocessing remains a weak link in many scientific ML studies.
The consequences are (1) confounded research results (Gundersen & Kjensmo, 2018), (2)
complicated peer review (Semmelrock et al., 2025), and (3) poor reuse (Samuel et al., 2021).
Researchers and engineers working with longitudinal regulated data (e.g., in energy production,
health, finance, or environmental monitoring) in particular need pipelines they can audit,
serialize, and hand to collaborators without reverse‑engineering a tangle of imperative code.
The current lack of reproducibility has been documented extensively in the literature (Gundersen
& Kjensmo, 2018; Johnson et al., 2017; Kelly et al., 2019; Raff, 2019; Semmelrock et al.,
2025); moreover, scientific venues have begun to address this issue (Various, 2024).

Related work
Scikit-learn provides Pipeline and ColumnTransformer, along with a rich estimator ecosystem
(Pedregosa et al., 2011), but lacks role-based variable grammar, limited human readability, and
awkward serialization. Feature-engine (Galli, 2021), pyjanitor (J. et al., 2019), or scikit-lego
(Warmerdam et al., 2025) add helpful transformers and data-cleaning verbs. However, none
provide a unified, role-centric abstraction with backend flexibility. The R recipes package
established the prep/bake pattern and a clean grammar for preprocessing (Kuhn et al., 2024).
ReciPies brings these ideas to Python, extends them with backend-agnostic execution on
Pandas and Polars, and emphasizes configuration-as-code artifacts suitable for a wide range of
machine learning pipelines.

Design and implementation
ReciPies adopts a tidy, stepwise recipe interface that emphasizes semantic roles over
column names and a strict separation of fitting from application. Transformations are

van de Water et al. (2026). ReciPies: A Lightweight Data Transformation Pipeline for Reproducible ML. Journal of Open Source Software, 11(117),
9261. https://doi.org/10.21105/joss.09261.

1

https://orcid.org/0000-0002-2895-4872
https://orcid.org/0000-0001-7699-3983
https://orcid.org/0000-0002-6499-7933
https://doi.org/10.21105/joss.09261
https://github.com/openjournals/joss-reviews/issues/9261
https://github.com/rvandewater/ReciPies
https://doi.org/10.5281/zenodo.15863617
https://energyenvironment.pnnl.gov/staff/staff_info.asp?staff_num=1834
https://orcid.org/0000-0002-3406-6214
https://github.com/simonprovost
https://github.com/panagiotisanagnostou
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.09261

declared on roles such as predictor, outcome, identifier, or timestamp. Recipes are prepped
on training data and baked on new data to prevent leakage. Each step is inspectable,
versionable, and serializable to JSON or YAML for provenance and review. Steps are
composable with explicit state and deterministic behavior given fixed inputs and seeds.
ReciPies supports both Pandas (McKinney, 2010), which is widely adopted in the ML
community, and the more recent Polars (Vink et al., 2024), which offers increased performance.

Train DataFrame Ingredients
Recipe

Define semantic roles
in your data

Define your reusable
pipeline using steps
applied to selectors

Step
Step

Step
Step

Prep

Load DataFrame
Prepped Recipe

Role
Role

Role

Test DataFrame Ingredients

Baked train
DataFrame

Bake Baked test
DataFrame

Step
Step

Step
Selectors

ML pipeline

Define step-wise
preprocessing

Define which features
to select for this step

A typical workflow 1) loads a Pandas or Polars training DataFrame, 2) wraps it
as an Ingredients object that records role metadata, 3) defines a Recipe from
Steps operating on columns selected based on roles by Selectors, 4) preps the
recipe on the training split to estimate parameters, and 5) bakes it on the held-
out split to apply those parameters without leakage. The baked outputs feed
downstream modeling and evaluation. Figure 1 gives an overview of this workflow.

Create and share beautiful images of your source code.
Start typing or drop a file into the text area to get started.

about source terms privacy offsets

created by @carbon_app ¬

Sign in/up

import polars as pl
from sklearn.model_selection import train_test_split
from sklearn.impute import MissingIndicator
from recipies import Ingredients, Recipe
from recipies.selector import has_role
from recipies.step import StepImputeFill, StepScale, StepSklearn

Load and split Physionet Computing in Cardiology Challenge 2019 dataset
df = pl.read_csv("Physionet_CiCC_2019.csv", sep="|")
df_train, df_test = train_test_split(df, test_size=0.2, random_state=42)

Define ingredients (training set + roles)
roles = {"outcomes": ["SepsisLabel"], "predictors": ["Age", "HR", "Temp"], "groups": ["PatientID"],
"sequences": ["ICULOS"]}
ing = Ingredients(df_train, roles=roles)

Define the recipe for processing the ingredients (e.g., scaling and imputation)
rec = Recipe(ing)
rec.add_step(StepScale())
rec.add_step(StepSklearn(MissingIndicator(features="all"), sel=has_role("predictor")))
rec.add_step(StepImputeFill(strategy="forward"), sel=has_role("predictor"))

Prepare (=fit) recipe on training data and apply the same recipe to the test set
df_train = rec.prep()
df_test = rec.bake(df_test)

ReciPies

VSCode Python Tweet Export

Figure 2 demonstrates usage on the PhysioNet Computing in Cardiology 2019 dataset (Reyna
et al., 2020), including role assignment, temporal imputation, and normalization. The prepped
recipe serializes to JSON or YAML, and reloading the artifact reproduces the transforms across
supported platforms.

Complete code and interactive notebooks are available in the project documentation. ReciPies

also provides a benchmarking suite comparing the performance of different preprocessing steps
on (generated) data. ReciPies is already used as the bedrock of reproducible pipelines in Yet
Another ICU Benchmark (Van de Water et al., 2024) The adaptable, configurable code modules

van de Water et al. (2026). ReciPies: A Lightweight Data Transformation Pipeline for Reproducible ML. Journal of Open Source Software, 11(117),
9261. https://doi.org/10.21105/joss.09261.

2

https://doi.org/10.21105/joss.09261

that make extensive use of ReciPies can be found here; this demonstrates that ReciPies can
be used for arbitrary research domains. Our work shows that there is no need to sacrifice
readability for performance, nor flexibility for simplicity. We encourage the development of
domain-specific step libraries and integration patterns that can benefit the broader ecosystem.

Future steps
Our first step is to expand the library of Polars-native steps to fully leverage its columnar
execution model, particularly for time-series operations and large-scale aggregations, where
Polars shows significant performance advantages. Second, we aim to integrate with ML
versioning systems to streamline the transition from research to production.

Acknowledgements
Robin P. van de Water is funded by the European Commission in the Horizon 2020 project
INTERVENE (Grant agreement ID: 101016775). This work has been edited with the help of
Large Language Models (LLMs) to improve readability.

References
Galli, S. (2021). Feature-engine: A Python package for feature engineering for machine learning.

Journal of Open Source Software, 6(65), 3642. https://doi.org/10.21105/joss.03642

Gundersen, O. E., & Kjensmo, S. (2018). State of the art: Reproducibility in artificial
intelligence. Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial Intelligence, 1644–1651. https:
//doi.org/10.1609/aaai.v32i1.11503

J., E., Barry, Z., Zuckerman, S., & Sailer, Z. (2019). Pyjanitor: A Cleaner API for Cleaning
Data. Proceedings of the Python in Science Conference, 50–53. https://doi.org/10.25080/
majora-7ddc1dd1-007

Johnson, A. E. W., Pollard, T. J., & Mark, R. G. (2017). Reproducibility in critical care: A
mortality prediction case study. Proceedings of the 2nd Machine Learning for Healthcare
Conference, 361–376. https://doi.org/10.1101/2024.06.04.24308417

Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key
challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17(1),
195. https://doi.org/10.1186/s12916-019-1426-2

Kuhn, M., Wickham, H., Hvitfeldt, E., Software, P., & PBC. (2024). Recipes: Preprocessing
and Feature Engineering Steps for Modeling (Version 1.1.0). https://doi.org/10.32614/
CRAN.package.recipes

McKinney, W. (2010). Data Structures for Statistical Computing in Python. In S. van der Walt
& J. Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 56–61).
https://doi.org/10.25080/Majora-92bf1922-00a

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12(85), 2825–2830. https://dl.acm.org/
doi/10.5555/1953048.2078195

Raff, E. (2019). A step toward quantifying independently reproducible machine learning research.
Proceedings of the 33rd International Conference on Neural Information Processing Systems,

van de Water et al. (2026). ReciPies: A Lightweight Data Transformation Pipeline for Reproducible ML. Journal of Open Source Software, 11(117),
9261. https://doi.org/10.21105/joss.09261.

3

https://github.com/rvandewater/YAIB/blob/development/icu_benchmarks/data/preprocessor.py
https://doi.org/10.21105/joss.03642
https://doi.org/10.1609/aaai.v32i1.11503
https://doi.org/10.1609/aaai.v32i1.11503
https://doi.org/10.25080/majora-7ddc1dd1-007
https://doi.org/10.25080/majora-7ddc1dd1-007
https://doi.org/10.1101/2024.06.04.24308417
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.32614/CRAN.package.recipes
https://doi.org/10.32614/CRAN.package.recipes
https://doi.org/10.25080/Majora-92bf1922-00a
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195
https://doi.org/10.21105/joss.09261

5485–5495. https://dl.acm.org/doi/10.5555/3454287.3454779

Reyna, M. A., Josef, C. S., Jeter, R., Shashikumar, S. P., Westover, M. B., Nemati, S.,
Clifford, G. D., & Sharma, A. (2020). Early Prediction of Sepsis From Clinical Data: The
PhysioNet/Computing in Cardiology Challenge 2019. Critical Care Medicine, 48(2), 210.
https://doi.org/10.1097/CCM.0000000000004145

Samuel, S., Löffler, F., & König-Ries, B. (2021). Machine Learning Pipelines: Provenance,
Reproducibility and FAIR Data Principles. In B. Glavic, V. Braganholo, & D. Koop (Eds.),
Provenance and Annotation of Data and Processes (pp. 226–230). Springer International
Publishing. https://doi.org/10.1007/978-3-030-80960-7_17

Semmelrock, H., Ross-Hellauer, T., Kopeinik, S., Theiler, D., Haberl, A., Thalmann, S., &
Kowald, D. (2025). Reproducibility in machine-learning-based research: Overview, barriers,
and drivers. AI Magazine, 46(2), e70002. https://doi.org/10.1002/aaai.70002

Van de Water, R., Schmidt, H. N. A., Elbers, P., Thoral, P., Arnrich, B., & Rockenschaub, P.
(2024, May 7). Yet Another ICU Benchmark: A Flexible Multi-Center Framework for Clinical
ML. Proceedings of The Twelfth International Conference on Learning Representations.
The Twelfth International Conference on Learning Representations. https://doi.org/10.
48550/arXiv.2306.05109

Various, A. (2024). ACM REP ’24: Proceedings of the 2nd ACM conference on reproducibility
and replicability. ACM REP ’24: Proceedings of the 2nd ACM Conference on Reproducibility
and Replicability. https://doi.org/10.1145/3641525

Vink, R., Gooijer, S. de, Beedie, A., Gorelli, M. E., Guo, W., Zundert, J. van, Peters, O.,
Hulselmans, G., Grinstead, C., nameexhaustion, Marshall, chielP, Burghoorn, G., Turner-
Trauring, I., Santamaria, M., Heres, D., Magarick, J., ibENPC, Wilksch, M., … Koutsouris,
I. (2024). Pola-rs/polars: Python Polars 1.0.0. Zenodo. https://doi.org/10.5281/zenodo.
12606903

Warmerdam, V. D., Bruzzesi, F., MBrouns, Collot, S., Boer, J. de, Kübler, R., pim-hoeven,
mkalimeri, Paulino, A., Gorelli, M. E., Verheijen, P., Borry, M., Hoogland, K., Masip,
D., Kowalczuk, M., ktiamur, AminaZ, Sharma, G., Lepelaars, C., … Payne, S. (2025).
Koaning/scikit-lego: V0.9.5. Zenodo. https://doi.org/10.5281/zenodo.15313097

van de Water et al. (2026). ReciPies: A Lightweight Data Transformation Pipeline for Reproducible ML. Journal of Open Source Software, 11(117),
9261. https://doi.org/10.21105/joss.09261.

4

https://dl.acm.org/doi/10.5555/3454287.3454779
https://doi.org/10.1097/CCM.0000000000004145
https://doi.org/10.1007/978-3-030-80960-7_17
https://doi.org/10.1002/aaai.70002
https://doi.org/10.48550/arXiv.2306.05109
https://doi.org/10.48550/arXiv.2306.05109
https://doi.org/10.1145/3641525
https://doi.org/10.5281/zenodo.12606903
https://doi.org/10.5281/zenodo.12606903
https://doi.org/10.5281/zenodo.15313097
https://doi.org/10.21105/joss.09261

	Summary
	Statement of need
	Related work
	Design and implementation
	Future steps
	Acknowledgements
	References

