DOI: 10.21105/joss.09265

Software
= Review 7
= Repository &
= Archive 7

Editor: Kanishka B. Narayan &
Reviewers:

= Qisdanni
= @henrykironde

Submitted: 07 October 2025
Published: 17 February 2026

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

The Journal of Open Source Software

PySensors 2.0: A Python Package for Sparse Sensor
Placement
1. Yash Bhangale ®!, Mohammad G. Abdo @3, Andrei A.

3, Bingni W. Brunton ®5, J. Nathan
1 and Krithika Manohar ©®!

Niharika Karnik
Klishin © 4, Joshua J. Cogliati
Kutz ® 2, Steven L. Brunton

1 Department of Mechanical Engineering, University of Washington, USA 2 Department of Applied
Mathematics, University of Washington, USA 3 Idaho National Laboratory, USA 4 Department of
Mechanical Engineering, University of Hawai'i at Manoa, USA 5 Department of Biology, University of
Washington, USA

Summary

PySensors is a Python package for the optimization of sparse sensor placement for
reconstruction and classification tasks. This major update to PySensors introduces novel
spatial constraints for sensor placement, including the enforcement of maximum or exact sensor
counts in specific regions, predetermined sensor locations, and minimum distances between
sensors. This functionality is extended to support custom basis inputs, enabling integration
of any data-driven or spectral basis. We also use a thermodynamic approach that goes
beyond a single “optimal” sensor configuration and maps the complete landscape of sensor
interactions induced by the training data. This comprehensive view facilitates integration
with external selection criteria and enables assessment of sensor replacement impacts. The
new optimization technique also accounts for over- and under-sampling of sensors, utilizing
a regularized least squares approach for robust reconstruction. Additionally, we implement
noise-induced uncertainty quantification of the estimation error and provide pointwise
uncertainty heat maps to guide deployment decisions. To highlight these additions, we outline
the mathematical algorithms and theory underlying these new capabilities. The usage of these
new features is illustrated with code examples and practical advice for implementation across
multiple application domains. Finally, we outline a roadmap of potential extensions to further
strengthen the package’s functionality and applicability to emerging sensing challenges.

Statement of need

The scalable optimization of sensor placement is critical for efficient monitoring, control,
and decision-making in complex engineering systems. Sensor measurements are necessary
for real-time estimation of high-dimensional fluid flows (Erichson et al., 2020), large-scale
flexible structures (Manohar, Hogan, et al., 2018), and temperature and pressure fields across
geophysical (Alonso et al., 2010) and nuclear energy systems (Karnik et al., 2024). Accurate
real-time tracking of key system variables depends sensitively on the locations of sensors
deployed within the system, which have to be optimized for the desired task. In general, the
selection of an optimal subset of sensors among candidate locations is NP-hard, necessitating
heuristic or greedy approaches such as compressed sensing (Donoho, 2006) or greedy algorithms
that exploit submodularity (Krause et al., 2008).

Karnik et al. (2026). PySensors 2.0: A Python Package for Sparse Sensor Placement. Journal of Open Source Software, 11(118), 9265. 1
https://doi.org/10.21105/joss.09265.

https://orcid.org/0000-0002-4259-0294
https://orcid.org/0009-0008-4163-6538
https://orcid.org/0000-0001-9845-6978
https://orcid.org/0000-0002-5740-8520
https://orcid.org/0000-0003-2471-8095
https://orcid.org/0000-0002-4831-3466
https://orcid.org/0000-0002-6004-2275
https://orcid.org/0000-0002-6565-5118
https://orcid.org/0000-0002-1582-6767
https://doi.org/10.21105/joss.09265
https://github.com/openjournals/joss-reviews/issues/9265
https://github.com/dynamicslab/pysensors
https://doi.org/10.5281/zenodo.18665848
https://orcid.org/0000-0001-8483-6216
https://github.com/isdanni
https://github.com/henrykironde
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.09265

The Journal of Open Source Software

| Classification (sSPOC) | — ,| Reconstruction (ssPoR) |

| Binary| |Multi-Class|
SVD | | Identity | |[Random | | Custom m
|Constraints == .I 69R| | 0!! I |cc?R| ITPIGR |

L7 II Solvers_ I| |

Exact I MaxI I Distance I I Predetermined I LLeasthquares Reguézrli;?gsl. Rast

h 4

v
I UQ and Risk Curve Prediction I
Geometric Shapes I User-Defined Functions I
|

INDEX
JPysensors 1.0 Capabilities] Constraint Geometry
I Circle I IEIIipseI IParaboIaI I Line I I Polygon I I Cylinder I Cloptimizer O solvers
[constraint Type Cua
[l Basis <A Default Settings

Figure 1: An overview image of capabilities of PySensors

PySensors is a Python package (Silva et al., 2021) dedicated to solving the complex challenge of
optimal sensor placement in data-driven systems. It implements advanced sparse optimization
algorithms that use dimensionality reduction techniques to identify the most informative
measurement locations with remarkable efficiency (Brunton et al., 2016; Clark et al., 2020;
Manohar, Brunton, et al., 2018). It helps users identify the best locations for sensors when
working with complex high dimensional data, focusing on both reconstruction (Manohar,
Brunton, et al., 2018) and classification (Brunton et al., 2016) tasks. The package follows
scikit-learn conventions for user-friendly access while offering advanced customization
options for experienced users. Other sensor placement packages such as Chama (Klise et al.,
2017), Polire (Narayanan et al., 2020), and 0SPS toolbox (Yi et al., 2011) focus primarily
on event detection, Gaussian process modeling, and structural health monitoring respectively,
while PySensors specifically targets signal reconstruction and classification applications.

The original PySensors code provided an implementation of Sparse Sensor Placement for
Reconstruction (SSPOR) using the QR optimizer for optimal sensor selection in unconstrained
placement settings in which the number of sensors p is equivalent to the number of modes
r. The previous version offers only limited support for constraints and for specifying the
number of sensors, which restricts its applicability to many real-world problems. The
Cost-Constrained QR (CCQR) framework incorporates heterogeneous cost functions into the
optimization process to accommodate practical deployment constraints. The Sparse Sensor
Placement Optimization for Classification (SSPOC) framework identifies minimal sensor
configurations that can classify high dimensional signals x € R™ as belonging to one of ¢
classes. Data is projected into a reduced spectral or data-driven basis » << n to enable
efficient optimization. Different basis functions such as Identity, SVD, and RandomProjection
implemented in PySensors can significantly impact sensor selection effectiveness and
reconstruction quality (Manohar, Brunton, et al., 2018).

This new version of Pysensors focuses specifically on practical engineering applications where
measurement data is inherently noisy and spatial deployment constraints are unavoidable. Key
improvements include constraint-aware optimization methods that handle spatial restrictions
and sensor density limitations. This version of PySensors implements methodologies introduced
in Klishin et al. (2023) and Karnik et al. (2024) to make them accessible to scientists and
engineers in all domains. These enhancements transform PySensors from a purely academic
tool into a practical platform for solving real-world sensing challenges while maintaining

Karnik et al. (2026). PySensors 2.0: A Python Package for Sparse Sensor Placement. Journal of Open Source Software, 11(118), 9265. 2
https://doi.org/10.21105/joss.09265.

https://doi.org/10.21105/joss.09265

J&SS

The Journal of Open Source Software

mathematical rigor. Our code is thoroughly documented and contains extensive examples.
PySensors is completely open-source and adheres to PEP8 stylistic standards.

New Features

PySensors 1.0 implements two sensor placement methods for reconstruction: (1) QR, a greedy
optimization technique that places sensors throughout an unconstrained domain, and (2) CCQR,
a cost-constrained optimization technique that accepts a user-defined vector of sensor costs
throughout the domain, penalizing larger-cost locations for sensor placement.

Traditional QR factorization presents challenges for under-sampling (p < r) and over-sampling
(p > r) regimes in which the number of sensors p is strictly greater or less than the model
rank r, respectively, and cannot enforce complex spatial constraints. PySensors 2.0 addresses
these limitations through two new optimization algorithms: Generalized QR (GQR) and Two
Point GReedy (TPGR).

Implementing spatially constrained sensor placement requires a deeper intervention in the
underlying QR optimization framework. To address this requirement, we add the generalized
QR GQR optimization functionality based on recent work (Karnik et al., 2024), which provides
the architectural flexibility needed to handle complex spatial constraints. We enhance the
algorithm'’s capabilities by implementing diverse spatial constraints options: maxn, exactn,
predetermined, and distance. Pre-defined constraint regions include ‘Circle’, ‘Ellipse’,
‘Polygon’, ‘Parabola’, ‘Line’, and ‘Cylinder’. Additionally, users can define a custom constraint
using a .py python file or an equation string.

In the context of reduced order models with truncation rank r, over-sampling refers to deploying
more sensors than the dimensionality of the reduced subspace (i.e., p > r sensors), while
under-sampling involves using fewer sensors than the model rank (p < r). The objective that
the QR optimizer is based on suffers from two limitations: it is not defined for the under-sampling
regime, and the underlying optimization is difficult to interpret and visualize directly. Klishin
et al. (2023) resolves these with a new optimization technique that accounts for over- and
under-sampling scenarios in sensor placement and decomposing the resulting objective into
sums over the placed sensors

H = —logdet(S72 + (S¥,)T(S¥,)/n*) ~ By + > _hi+ Y J;

i€y iFjeEY
The Two Point Greedy (TPGR) optimizer uses the above approximate objective, which allows
the user to specify any number of sensors p for a given mode number r. In contrast, the QR
pivoting algorithm always returns exactly p = r sensors, ordered by decreasing importance,
with any additional sensors selected randomly. Beyond this flexibility, TPGR can also generate
sensor placement energy landscapes, providing insight into the relative quality of different
sensor configurations.

PySensors 2.0 adds the Regularized Least Squares solution derived in Klishin et al. (2023):
- -1
ARLS = (S 2 + (S\I,T)T(S\I,r)/lrf) (S\IIT)T/U27

This Regularized Least Squares solution is the new default reconstruction solver for PySensors
2.0, replacing the Least Squares solution via the Moore-Penrose pseudoinverse. We implement
uncertainty quantification metrics from Klishin et al. (2023) to assess the propagation of
measurement noise through reconstruction algorithms and provide robust pointwise error
estimates in reconstruction outputs. In addition, this version adds support for custom bases,
so that researchers can transform their data into an alternative basis such as dynamic mode
decomposition (DMD) modes before passing it to PySensors.

Finally, we demonstrate these new functionalities using new notebook examples for nuclear
energy component systems, and update and streamline existing notebooks for sea surface
temperature and image reconstruction.

Karnik et al. (2026). PySensors 2.0: A Python Package for Sparse Sensor Placement. Journal of Open Source Software, 11(118), 9265. 3
https://doi.org/10.21105/joss.09265.

https://doi.org/10.21105/joss.09265

SS

The Journal of Open Source Software

Which method should | use?
ISTART: What is the goal of sensing?l

y
——— - INDEX
I Classification (SSPOC) I I Reconstruction (SSPOR) I o
T 1 optimizer I solvers
1 Model Clua
I Choose the appropriate basis ¥,. | IChoose the appropriate basis ¥, I [Basis vk Optimal Sensor Set
[Classifier
Does you data have two or more Is prior information on mode
classes? variance and measurement Y|
Two l ¥ More noise available? | TPGR |-

I Binary I IMuIti-CEl I NO

Are there cost or spatial

ES
Is regularization
limitations that must be strength available?
Choose a classifier from the considered when selecting NO ¢ v YES

scikit-learn linear classifiers (LDA and positioning sensors? Least Squares ||Regularized Least
- default, Logzts:c)‘, Regression, YES COST Squares
X >

Most likely State,

Plot Confusion Matrix | b
| YES SPATIAL m Uncertainty Heatmap,
Risk Curve Prediction.

Figure 2: A flowchart to suggest which method to use

Acknowledgments

The authors would like to thank B. de Silva for valuable feedback. The authors acknowledge
support from the Boeing Company; the National Science Foundation through the Mathematical
Foundations of Digital Twins (MATH-DT) program under Award Nos. 2529361 and 2529362;
NSF Al Institute in Dynamic Systems under grant 2112085 and the Idaho National Laboratory
(INL) Laboratory Directed Research & Development (LDRD) Program under DOE Idaho
Operations Office Contract DE-AC07-051D14517 for LDRD-22A1059-091FP.

References

Alonso, M. T., Lépez-Dekker, P., & Mallorqui, J. J. (2010). A novel strategy for radar imaging
based on compressive sensing. IEEE Transactions on Geoscience and Remote Sensing,
48(12), 4285-4295. https://doi.org/10.1109/TGRS.2010.2051231

Brunton, B. W., Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Sparse sensor placement
optimization for classification. SIAM Journal on Applied Mathematics, 76(5), 2099-2122.
https://doi.org/10.1137/15M1036713

Clark, E., Brunton, S. L., & Kutz, J. N. (2020). Multi-fidelity sensor selection: Greedy
algorithms to place cheap and expensive sensors with cost constraints. [EEE Sensors
Journal, 21(1), 600-611. https://doi.org/10.1109/JSEN.2020.3013094

Donoho, D. L. (2006). Compressed sensing. |EEE Transactions on Information Theory, 52(4),
1289-1306. https://doi.org/10.1109,/TIT.2006.871582

Erichson, N. B., Mathelin, L., Yao, Z., Brunton, S. L., Mahoney, M. W., & Kutz, J. N. (2020).
Shallow neural networks for fluid flow reconstruction with limited sensors. Proceedings of
the Royal Society A, 476(2238), 20200097. https://doi.org/10.1098/rspa.2020.0097

Karnik, N., Abdo, M. G., Estrada-Perez, C. E., Yoo, J. S., Cogliati, J. J., Skifton, R. S.,
Calderoni, P., Brunton, S. L., & Manohar, K. (2024). Constrained optimization of sensor
placement for nuclear digital twins. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.
2024.3368875

Karnik et al. (2026). PySensors 2.0: A Python Package for Sparse Sensor Placement. Journal of Open Source Software, 11(118), 9265. 4
https://doi.org/10.21105/joss.09265.

https://doi.org/10.1109/TGRS.2010.2051231
https://doi.org/10.1137/15M1036713
https://doi.org/10.1109/JSEN.2020.3013094
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1098/rspa.2020.0097
https://doi.org/10.1109/JSEN.2024.3368875
https://doi.org/10.1109/JSEN.2024.3368875
https://doi.org/10.21105/joss.09265

The Journal of Open Source Software

Klise, K. A., Nicholson, B., & Laird, C. D. (2017). Sensor placement optimization using
chama. Number SAND2017-11472. Albuquerque, NM: Sandia National Laboratories.
https://doi.org/10.2172/1405271

Klishin, A. A., Kutz, J. N., & Manohar, K. (2023). Data-induced interactions of sparse sensors.
arXiv Preprint arXiv:2307.11838. https://doi.org/10.48550/arXiv.2307.11838

Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in Gaussian
processes: Theory, efficient algorithms and empirical studies. Journal of Machine Learning
Research, 9(2). https://dl.acm.org/doi/10.5555/1390681.1390689

Manohar, K., Brunton, B. W., Kutz, J. N., & Brunton, S. L. (2018). Data-driven sparse
sensor placement for reconstruction: Demonstrating the benefits of exploiting known
patterns. IEEE Control Systems Magazine, 38(3), 63-86. https://doi.org/10.1109/MCS.
2018.2810460

Manohar, K., Hogan, T., Buttrick, J., Banerjee, A. G., Kutz, J. N., & Brunton, S. L. (2018).
Predicting shim gaps in aircraft assembly with machine learning and sparse sensing. Journal
of Manufacturing Systems, 48, 87-95. https://doi.org/10.1016/j.jmsy.2018.01.011

Narayanan, S. D., Patel, Z. B., Agnihotri, A., & Batra, N. (2020). A toolkit for spatial
interpolation and sensor placement. Proceedings of the 18th Conference on Embedded
Networked Sensor Systems, 653—-654. https://doi.org/10.1145/3384419.3430407

Silva, B. M. de, Manohar, K., Clark, E., Brunton, B. W., Kutz, J. N., & Brunton, S. L.
(2021). PySensors: A Python package for sparse sensor placement. Journal of Open Source
Software, 6(58), 2828. https://doi.org/10.21105/joss.02828

Yi, T-H., Li, H-N., & Gu, M. (2011). Optimal sensor placement for structural health
monitoring based on multiple optimization strategies. The Structural Design of Tall and
Special Buildings, 20(7), 881-900. https://doi.org/10.1002/tal.712

Karnik et al. (2026). PySensors 2.0: A Python Package for Sparse Sensor Placement. Journal of Open Source Software, 11(118), 9265. 5
https://doi.org/10.21105/joss.09265.

https://doi.org/10.2172/1405271
https://doi.org/10.48550/arXiv.2307.11838
https://dl.acm.org/doi/10.5555/1390681.1390689
https://doi.org/10.1109/MCS.2018.2810460
https://doi.org/10.1109/MCS.2018.2810460
https://doi.org/10.1016/j.jmsy.2018.01.011
https://doi.org/10.1145/3384419.3430407
https://doi.org/10.21105/joss.02828
https://doi.org/10.1002/tal.712
https://doi.org/10.21105/joss.09265

	Summary
	Statement of need
	New Features
	Acknowledgments
	References

