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Summary

Partial differential equations (PDEs) underpin much of engineering, physics and applied science,
providing the basis for simulations across a wide range of physical and biological systems.
Many high-performance numerical schemes are implemented in compiled languages, which
deliver speed but at the cost of accessibility. These implementations are often difficult to adapt
or extend, limiting rapid experimentation, the development of new methods and their use in
training.

Reyna is a Python package for solving second-order PDEs with non-negative characteristic
form using the polytopal discontinuous Galerkin finite element method (DGFEM). It offers a
flexible and approachable workflow while avoiding the complexity and steep learning curve of
HPC-focused codebases.

Reyna is designed with a modular structure and an optimised implementation aiming at
balancing clarity with performance. It provides a practical platform for developing and testing
finite element methods and for producing concise instructional examples, lowering the barrier
to experimentation whilst retaining state-of-the-art numerical capability.

Statement of Need

DGFEMs offer flexibility and high-order accuracy, and polytopal elements extend this adaptability
further through general meshing and refined discretisations. Yet most available implementations
are embedded in complex C++ or Fortran frameworks, see MFEM by Anderson et al. (2021),
Feel++ by Prud'Homme et al. (2012), Dune-FEM-DG by Dedner et al. (2017) (now supporting
polygonal meshes), deal.ll by Bangerth et al. (2007) and FEMPAR by Badia et al. (2018), for
example, which require substantial technical overhead to adapt or extend. Packages such as
FEniCS by Alnzs et al. (2015) and Firedrake by Rathgeber et al. (2016) exist with Python
interfaces, but extensive knowledge is required, limiting their use for prototyping and teaching.
Quail by Ching et al. (2022) provides a Python DGFEM package aimed at this purpose, but it
is restricted to triangular and quadrilateral meshes.

Reyna provides a lightweight, vectorised Python framework that makes polytopal DGFEMs
accessible without sacrificing efficiency. It enables rapid experimentation, straightforward
extension and practical use in both research and education by leveraging established scientific
Python libraries and its modular architecture.

Description

Reyna is a lightweight, vectorised Python framework that makes polytopal DGFEMs accessible
without sacrificing efficiency. It gives researchers and educators a tool that makes advanced
techniques easy to prototype, test and share. The package supports rapid exploration of new
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ideas while retaining the rigour needed for scientific computation with a particular emphasis
on clarity and minimal ramp-up time.

The architecture of Reyna (Figure 1) is intentionally modular, reflecting the natural workflow
of finite element methods. It consists of three modules: polymesher, geometry, and DGFEM.
The polymesher module provides an interface for defining polytopal meshes, whether generated
internally or supplied by custom methods, enabling flexible handling of general domains (see
Talischi et al. (2012) for methodology and Calloo et al. (2025) for an early application in
neutronics). The geometry module builds on this mesh to compute the quantities required
for discretisation (see Dong et al. (2020)), while the DGFEM module assembles and solves
the global system (see Cangiani et al. (2014) and Cangiani et al. (2016) for mathematical
details). This separation of concerns makes the code easier to extend; for example, different
meshing algorithms or geometry formulations can be swapped in without altering the rest of
the pipeline.
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Figure 1: Architechture flow diagram of Reyna.

Reyna provides vectorised assembly routines for constructing the global stiffness matrix and
forcing vector. These routines adapt automatically to the geometry of each polytopal element
without significant computational overhead. Reyna combines efficiency with transparency,
producing compact code that closely follows the underlying mathematics through accessible
NumPy array operations. Simple visualisation tools based on Matplotlib are also included,
allowing meshes and solutions to be rendered directly in scripts or notebooks (Figure 2). For
further examples, Reyna ships with Jupyter notebooks as an interactive learning resource.
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Figure 2: DGFEM solution plotted with Reyna.

The design philosophy is clarity first, a focused codebase with minimal dependencies (NumPy,
SciPy, Shapely, Numba and Matplotlib) written so that users can readily inspect, modify, and
extend the implementation. The combination of polytopal DGFEMs with Python accessibility
makes Reyna a practical platform for researchers developing new applications and for educators
introducing advanced numerical methods.

Example: Minimal Implementation of DGFEM

A key strength of Reyna is the ability to run DGFEM simulations in a compact and readable
Python style. As an illustration, we provide a minimal example, inspired by Alberty et al.
(1999) and Sutton (2017). Despite its brevity, the implementation captures the complete
computational workflow of the package.

We consider the exact solution wu(z,y) = sin(mz)sin(ry) on the two-dimensional
CircleCircleDomain eccentric annular domain. The code below solves this problem with
diffusion, advection and reaction coefficients, together with a forcing term chosen appropriately
for the exact solution.

import numpy as np

from reyna.polymesher.two_dimensional.domains import CircleCircleDomain
from reyna.polymesher.two_dimensional.main import poly_mesher

from reyna.geometry.two_dimensional.DGFEM import DGFEMGeometry
from reyna.DGFEM.two_dimensional.main import DGFEM
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# Defining the Domain

dom = CircleCircleDomatin()
# Defining the Coefficients
def diffusion(x):

out = np.zeros((x.shape[0], 2, 2), dtype=np.float64)
for i in range(x.shape[0]):

out[i, 0, 0] = 1.0
out[i, 1, 1] = 1.0
return out

advection = lambda x: np.ones(x.shape, dtype=float)
reaction = lambda x: np.pi ** 2 * np.ones(x.shape[0], dtype=float)
forcing = lambda x: (np.pi * (np.cos(np.pi * x[:, 0]) *
np.sin(np.pt * x[:, 11) +
np.sin(np.pti * x[:, 0]) *
np.cos(np.pi * x[:, 1]1)) +
3.0 * np.pil ** 2 *
np.sin(np.pi * x[:, 0]) *
np.sin(np.pi * x[:, 11))

bcs = lambda x: np.sin(np.pi * x[:, 0]) * np.sin(np.pi * x[:, 1])
# Generating the Mesh and Geometry

poly_mesh = poly_mesher(dom, max_iterations=10, n_points=1024, cleaned=True)
geometry = DGFEMGeometry(poly_mesh)

# Solving the PDE

dg = DGFEM(geometry, polynomial_degree=1)
dg.add_data(
diffusion=diffusion,
advection=advection,
reaction=reaction,
dirichlet_bcs=bcs,
forcing=forcing

dg.dgfem(solve=True)

This minimal example is fully functional and illustrates the flexibility and simplicity of the
package. Plotting the solution with dg.plot_DG() produces Figure 2.

The brevity of this example highlights two advantages of Reyna. First, the vectorised design
produces concise code that mirrors the underlying mathematics, reducing complexity and
making it straightforward to experiment with new numerical schemes. Second, the example is
entirely self-contained, which makes it well-suited to research demonstrations and teaching.
The full workflow is visible, easy to follow, and simple to adapt without low-level setup.
While the example is kept deliberately short, the implementation remains faithful to the full
mathematical formulation, and users can explore these details directly in the code. These
qualities make Reyna a practical and approachable tool for both researchers developing new
methods and educators introducing advanced numerical techniques.
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