The Journal of Open Source Software

DOI: 10.21105/joss.09293

Software
= Review @@
= Repository @
= Archive 7

Editor: Chris Vernon &
Reviewers:

= Q@rahulkhorana

= Qferchaure

Submitted: 22 October 2025
Published: 29 January 2026

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

OnlineNMF jI: A Julia Package for Out-of-core and
Sparse Non-negative Matrix Factorization

Koki Tsuyuzaki® 12

1 Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Japan 2
Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Japan

Summary

Non-negative Matrix Factorization (NMF) is a widely used dimensionality reduction technique
for identifying a small number of non-negative components that minimize the reconstruction
error when applied to high-dimensional data (Meng, 2016; Stein-O’'Brien, 2018). NMF has
been applied across various fields of data science, including face recognition (Lee, 1999), audio
signal processing (Kameoka, 2015), recommender system (Sajad, 2025), natural language
processing (also known as a “topic model”) (Srivastava & Sahami, 2009), population genetics
(also known as “admixture analysis”) (Simanovsky, 2019), and omics studies (Meng, 2016;
Rodriques, 2019; Stein-O'Brien, 2018).

Despite its broad applicability, NMF becomes computationally prohibitive for large data matrices,
making it difficult to apply in practice. In particular, recent advances in single-cell omics have
led to datasets with millions of cells, for which standard NMF implementations often fail to
scale. To meet this requirement, | present OnlineNMF. j1, which is a Julia package to perform
some NMF algorithms (https://github.com/rikenbit/OnlineNMF jl).

Statement of need

NMF is a workhorse algorithm for most data science tasks. However, as the size of the data
matrix increases, it often becomes too large to fit into memory. In such cases, an out-of-core
(OOC) implementation — where only subsets of data stored on disk are loaded into memory
for computation — is desirable. Additionally, representing the data in a sparse matrix format,
where only non-zero values and their coordinates are stored, is computationally advantageous.
Therefore, a NMF implementation that supports both OOC computation and sparse data
handling is highly desirable (Figure 1).

Similar discussions have been made in the context of Principal Component Analysis (PCA),
and we have independently developed a Julia package, OnlinePCA.j1l (Tsuyuzaki, 2020).
OnlineNMF.jl is a spin-off version of OnlinePCA. j1, implementing NMF.

Tsuyuzaki. (2026). OnlineNMF jl: A Julia Package for Out-of-core and Sparse Non-negative Matrix Factorization. Journal of Open Source Software, 1
11(117), 9293. https://doi.org/10.21105/joss.09293.

https://orcid.org/0000-0003-3797-2148
https://doi.org/10.21105/joss.09293
https://github.com/openjournals/joss-reviews/issues/9293
https://github.com/rikenbit/OnlineNMF.jl
https://doi.org/10.5281/zenodo.18250632
https://energyenvironment.pnnl.gov/staff/staff_info.asp?staff_num=1834
https://orcid.org/0000-0002-3406-6214
https://github.com/rahulkhorana
https://github.com/ferchaure
https://creativecommons.org/licenses/by/4.0/
https://github.com/rikenbit/OnlineNMF.jl
https://doi.org/10.21105/joss.09293

SS

The Journal of Open Source Software

MM BinCOO
(Data.mtx) (Data.bincoo)
M (cell 3 2
% Csy & (232 & (23
—| (Data.csv) S . S|.
Z, = (S|
3t 3
l OnlinePCA.csv2bin l OnlinePCA.mm2bin l OnlinePCA.bincoo2bin
M e 3 e 2 Chunk-level
Julia bina N Julah ary N Julia Incremental
(Dath.zst) §Da a.mix{zst §Data. iacpo.zst Tow-vectors loading
T+ T+
sparse_nmf bincoo_nmf
\ nmf/ dnmf \ sparse_dnmf / bincoo_dnmf

V.csv

K
U.csv M
N| | K

+ RecError.csv, Converged
l Result of NMF

Further data analysis
(e.g., Visualization, Clustering, DEGs)

Figure 1: Overview of workflow in OnlineNMF jl.

Example

NMF can be easily reproduced on any machine where Julia is pre-installed by using the following
commands in the Julia REPL window:

Installation
First, install OnlineNMF. j1 from the official Julia package registry or directly from GitHub:

Install OnlineNMF.jl from Julia General
julia> Pkg.add("OnlineNMF")

or GitHub for the latest version
julia> Pkg.add(url="https://github.com/rikenbit/OnlineNMF.jl.git")

Preprocess of CSV

Then, write a synthetic data as a CSV file, convert it to a compressed binary format using
Zstandard, and prepare summary statistics for PCA. Matrix Market (MM) format is also
supported for sparse matrices.

using OnlinePCA

using OnlinePCA: write_csv
using OnlineNMF

using Distributions

using DelimitedFiles

using SparseArrays

using MatrixMarket

CSV
tmp = mktempdir()

Tsuyuzaki. (2026). OnlineNMF jl: A Julia Package for Out-of-core and Sparse Non-negative Matrix Factorization. Journal of Open Source Software, 2
11(117), 9293. https://doi.org/10.21105/joss.09293.

https://doi.org/10.21105/joss.09293

SS

The Journal of Open Source Software

data = rand(Binomial(10, 0.05), 300, 99)
datal[1:50, 1:33] .= 100*data[1:50, 1:33]
data[51:100, 34:66] .= 100*data[51:100, 34:66]
datal[101:150, 67:99] .= 100*data[101:150, 67:99]
write_csv(joinpath(tmp, "Data.csv"), data)

Matrix Market (MM)
mmwrite(joinpath(tmp, "Data.mtx"), sparse(data))

Binarization (Zstandard)
csv2bin(csvfile=joinpath(tmp, "Data.csv"), binfile=joinpath(tmp, "Data.zst"))

Sparsification (Zstandard + MM format)
mm2bin(mmfile=joinpath(tmp, "Data.mtx"), binfile=joinpath(tmp, "Data.mtx.zst"))

Plot settings

Define a helper function to visualize the results of NMF using the PlotlyJS.jl package. It
generates two subplots: Component-1 vs Component-2 and Component-2 vs Component-3,
with color-coded groups.

using DataFrames
using PlotlyJS

function subplots(out_nmf, group)

data frame

data_left = DataFrame(nmfi=out_nmf[1][:,1], nmf2=out_nmf[1]1[:,2],
group=group)

data_right = DataFrame(nmf2=out_nmf[1]1[:,2], nmf3=out_nmf[1][:,3],
group=group)

plot

p_left = Plot(data_left, x=:nmfl, y=:nmf2, mode="markers",
marker_size=10, group=:group)

p_right = Plot(data_right, x=:nmf2, y=:nmf3, mode="markers",
marker_size=10,

group=:group, showlegend=false)

p_left.data[1]["marker_color"] = "red"

p_left.data[2]["marker_color"] = "blue"

p_left.data[3]["marker_color"] = "green"

p_right.data[1]["marker_color"] = "red"

p_right.datal[2]["marker_color"] = "blue"

p_right.data[3]["marker_color"] = "green"

p_left.data[1]["name"] = "groupl"

p_left.datal[2]["name"] "group2"

p_left.data[3]["name"] "group3"

p_left.layout["title"] = "Component 1 vs Component 2"

p_right.layout["title"] = "Component 2 vs Component 3"

p_left.layout["xaxis_title"] = "nmf-1"

p_left.layout["yaxis_title"] = "nmf-2"

p_right.layout["xaxis_title"] = "nmf-2"

p_right.layout["yaxis_title"] = "nmf-3"

plot([p_left p_right])

end

group=vcat(repeat(["groupl"],inner=100),

Tsuyuzaki. (2026). OnlineNMF jl: A Julia Package for Out-of-core and Sparse Non-negative Matrix Factorization. Journal of Open Source Software, 3
11(117), 9293. https://doi.org/10.21105/joss.09293.

https://doi.org/10.21105/joss.09293

The Journal of Open Source Software

repeat(["group2"],inner=100),
repeat(["group3"],inner=100))

NMF based on Alpha-Divergence

This example demonstrates NMF using the a-divergence as the loss function (Figure 2). By
setting alpha=2, the objective corresponds to the Pearson divergence. The input data is
assumed to be a dense matrix compressed with Zstandard (.zst format).

out_nmf_alpha = nmf(input=joinpath(tmp, "Data.zst"),
dim=3, alpha=2, numepoch=30, algorithm="alpha")

subplots(out_nmf_alpha, group)

Component 1 vs Component 2 Component 2 vs Component 3
0.03 ® groupl
b4 0.03 2
b4 ’ * ® group2
4 o g
0.025 . : @® group3
0.025 g
: :
0.02 @ 1
® 0.02 @
- -
o = 0 =
I E oois @
e 3 e 3
: :
0.01 o 001 ®
0.005 0.005
o @ 886300000000 o @ ® e0osdodnetes vot
0 0.01 0.02 0.03 0 0.01 0.02 0.03
nmf-1 nmf-2

Figure 2: Output of nmf against binarized CSV format.

Sparse-NMF based on Beta-Divergence

This example performs NMF on a sparse matrix using the S-divergence (Figure 3). The input
is a MM formatted sparse matrix file (.mtx.zst). When beta=1, the loss corresponds to the
Kullback-Leibler divergence, and sparse-specific optimization is used internally.

out_sparse_nmf_beta = sparse_nmf(input=joinpath(tmp, "Data.mtx.zst"),
dim=3, beta=1, numepoch=30, algorithm="beta")

subplots(out_sparse_nmf_beta, group)

Tsuyuzaki. (2026). OnlineNMF jl: A Julia Package for Out-of-core and Sparse Non-negative Matrix Factorization. Journal of Open Source Software, 4
11(117), 9293. https://doi.org/10.21105/joss.09293.

https://doi.org/10.21105/joss.09293

The Journal of Open Source Software

Component 1 vs Component 2 Component 2 vs Component 3
® groupl
[]]
[] 0.03 ® group2
0025 @ . B
[] : ® group3
° 0.025 :
0oz ® o
. ® 4
® L]
® 002 @
] ®
o 0015 @ o =
o ° s
£ 4 E o015 H
® °
0.01 o
001 ®
°
0.005 0.005
0o @ o0 00000000000 %00 0o @ 0000000000 SO0
0 0.01 0.02 0.03 0 0.01 0.02
nmf-1 nmf-2

Figure 3: Output of sparse_nmf against binarized MM format.

Related work

There are various implementations of NMF (Boureima, 2024; Pedregosa, 2011; Tsuyuzaki,
2023) and some of them support OOC computation or sparse data formats (Lab, 2023;
Pedregosa, 2011). While RcppPlanc/PLANC supports both OOC and R'’s internal sparse format
(dgCMatrix), OnlineNMF. j1 is designed to handle language-agnostic sparse formats such as
MM and Binary COO (BinCOO), enabling seamless integration with external data pipelines.

Function Name Language OOC Sparse Format
nnTensor: :NMF R No -
sklearn.decomposition.NMF Python No -
pyDNMFk Python No -
NMF.MultUpdate Julia No -
sklearn.decomposition.MiniBatchNMF Python Yes -
RcppPlanc/PLANC R/C++ Yes dgCMatrix
OnlineNMF.j1l Julia Yes MM/BinCOO
References

Boureima, |. et al. (2024). Distributed out-of-memory NMF on CPU/GPU architectures. J
Supercomput, 80, 3970-3999. https://doi.org/10.1007/s11227-023-05587-4

Kameoka, H. (2015). Non-negative matrix factorization and its variants with applications to
audio signal processing. Journal of the Japan Statistical Society, Japanese Issue, 44(2),
383-407. https://doi.org/10.11329/jjssj.44.383

Lab, W. (2023). RcppPlanc: R wrapper for the PLANC nonnegative matrix factorization
library. https://github.com/welch-lab/RcppPlanc. https://doi.org/10.32614/CRAN.
package.RcppPlanc

Lee, D. D. et al. (1999). Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755), 788-791. https://doi.org/10.1038 /44565

Tsuyuzaki. (2026). OnlineNMF jl: A Julia Package for Out-of-core and Sparse Non-negative Matrix Factorization. Journal of Open Source Software, 5
11(117), 9293. https://doi.org/10.21105/joss.09293.

https://doi.org/10.1007/s11227-023-05587-4
https://doi.org/10.11329/jjssj.44.383
https://github.com/welch-lab/RcppPlanc
https://doi.org/10.32614/CRAN.package.RcppPlanc
https://doi.org/10.32614/CRAN.package.RcppPlanc
https://doi.org/10.1038/44565
https://doi.org/10.21105/joss.09293

SS

The Journal of Open Source Software

Meng, C. et al. (2016). Dimension reduction techniques for the integrative analysis of multi-
omics data. Briefings in Bioinformatics, 17(4), 628—-641. https://doi.org/10.1093/bib/
bbv108

Pedregosa, F. et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12(85), 2825-2830.

Rodriques, S. G. et al. (2019). Slide-seq: A scalable technology for measuring genome-wide
expression at high spatial resolution. Science, 363, 1463—-1467. https://doi.org/10.1126/
science.aaw1219

Sajad, A. et al. (2025). Recommender systems based on non-negative matrix factorization: A
survey. IEEE Transactions on Artificial Intelligence, 1-21. https://doi.org/10.1109/TAl.
2025.3559053

Simanovsky, A. L. et al. (2019). Single haplotype admixture models using large scale HLA
genotype frequencies to reproduce human admixture. Immunogenetics, 71, 589-604.
https://doi.org/10.1007/s00251-019-01144-7

Srivastava, A. N., & Sahami, M. (Eds.). (2009). Text mining: Classification, clustering, and
applications. Chapman; Hall/CRC. https://doi.org/10.1201/9781420059458

Stein-O'Brien, G. L. et al. (2018). Enter the matrix: Factorization uncovers knowledge from
omics. Trends in Genetics, 34(10), 790-805. https://doi.org/10.1016/]j.tig.2018.07.003

Tsuyuzaki, K. et al. (2020). Benchmarking principal component analysis for large-scale single-
cell RNA-sequencing. Genome Biology, 21(1). https://doi.org/10.1186/s13059-019-1900-3

Tsuyuzaki, K. et al. (2023). nnTensor: An R package for non-negative matrix/tensor
decomposition. Journal of Open Source Software, 8(84), 5015. https://doi.org/10.21105/
joss.05015

Tsuyuzaki. (2026). OnlineNMF jl: A Julia Package for Out-of-core and Sparse Non-negative Matrix Factorization. Journal of Open Source Software, 6
11(117), 9293. https://doi.org/10.21105/joss.09293.

https://doi.org/10.1093/bib/bbv108
https://doi.org/10.1093/bib/bbv108
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1109/TAI.2025.3559053
https://doi.org/10.1109/TAI.2025.3559053
https://doi.org/10.1007/s00251-019-01144-7
https://doi.org/10.1201/9781420059458
https://doi.org/10.1016/j.tig.2018.07.003
https://doi.org/10.1186/s13059-019-1900-3
https://doi.org/10.21105/joss.05015
https://doi.org/10.21105/joss.05015
https://doi.org/10.21105/joss.09293

	Summary
	Statement of need
	Example
	Installation
	Preprocess of CSV
	Plot settings
	NMF based on Alpha-Divergence
	Sparse-NMF based on Beta-Divergence

	Related work
	References

