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Summary

Non-negative Matrix Factorization (NMF) is a widely used dimensionality reduction technique
for identifying a small number of non-negative components that minimize the reconstruction
error when applied to high-dimensional data (Meng, 2016; Stein-O’'Brien, 2018). NMF has
been applied across various fields of data science, including face recognition (Lee, 1999), audio
signal processing (Kameoka, 2015), recommender system (Sajad, 2025), natural language
processing (also known as a “topic model”) (Srivastava & Sahami, 2009), population genetics
(also known as “admixture analysis”) (Simanovsky, 2019), and omics studies (Meng, 2016;
Rodriques, 2019; Stein-O'Brien, 2018).

Despite its broad applicability, NMF becomes computationally prohibitive for large data matrices,
making it difficult to apply in practice. In particular, recent advances in single-cell omics have
led to datasets with millions of cells, for which standard NMF implementations often fail to
scale. To meet this requirement, | present OnlineNMF. j1, which is a Julia package to perform
some NMF algorithms (https://github.com/rikenbit/OnlineNMF jl).

Statement of need

NMF is a workhorse algorithm for most data science tasks. However, as the size of the data
matrix increases, it often becomes too large to fit into memory. In such cases, an out-of-core
(OOC) implementation — where only subsets of data stored on disk are loaded into memory
for computation — is desirable. Additionally, representing the data in a sparse matrix format,
where only non-zero values and their coordinates are stored, is computationally advantageous.
Therefore, a NMF implementation that supports both OOC computation and sparse data
handling is highly desirable (Figure 1).

Similar discussions have been made in the context of Principal Component Analysis (PCA),
and we have independently developed a Julia package, OnlinePCA.j1l (Tsuyuzaki, 2020).
OnlineNMF.jl is a spin-off version of OnlinePCA. j1, implementing NMF.
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Figure 1: Overview of workflow in OnlineNMF jl.

Example

NMF can be easily reproduced on any machine where Julia is pre-installed by using the following
commands in the Julia REPL window:

Installation
First, install OnlineNMF. j1 from the official Julia package registry or directly from GitHub:

# Install OnlineNMF.jl from Julia General
julia> Pkg.add("OnlineNMF")

# or GitHub for the latest version
julia> Pkg.add(url="https://github.com/rikenbit/OnlineNMF.jl.git")

Preprocess of CSV

Then, write a synthetic data as a CSV file, convert it to a compressed binary format using
Zstandard, and prepare summary statistics for PCA. Matrix Market (MM) format is also
supported for sparse matrices.

using OnlinePCA

using OnlinePCA: write_csv
using OnlineNMF

using Distributions

using DelimitedFiles

using SparseArrays

using MatrixMarket

# CSV
tmp = mktempdir()
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data = rand(Binomial(10, 0.05), 300, 99)
datal[1:50, 1:33] .= 100*data[1:50, 1:33]
data[51:100, 34:66] .= 100*data[51:100, 34:66]
datal[101:150, 67:99] .= 100*data[101:150, 67:99]
write_csv(joinpath(tmp, "Data.csv"), data)

# Matrix Market (MM)
mmwrite(joinpath(tmp, "Data.mtx"), sparse(data))

# Binarization (Zstandard)
csv2bin(csvfile=joinpath(tmp, "Data.csv"), binfile=joinpath(tmp, "Data.zst"))

# Sparsification (Zstandard + MM format)
mm2bin(mmfile=joinpath(tmp, "Data.mtx"), binfile=joinpath(tmp, "Data.mtx.zst"))

Plot settings

Define a helper function to visualize the results of NMF using the PlotlyJS.jl package. It
generates two subplots: Component-1 vs Component-2 and Component-2 vs Component-3,
with color-coded groups.

using DataFrames
using PlotlyJS

function subplots(out_nmf, group)

# data frame

data_left = DataFrame(nmfi=out_nmf[1][:,1], nmf2=out_nmf[1]1[:,2],
group=group)

data_right = DataFrame(nmf2=out_nmf[1]1[:,2], nmf3=out_nmf[1][:,3],
group=group)

# plot

p_left = Plot(data_left, x=:nmfl, y=:nmf2, mode="markers",
marker_size=10, group=:group)

p_right = Plot(data_right, x=:nmf2, y=:nmf3, mode="markers",
marker_size=10,

group=:group, showlegend=false)

p_left.data[1]["marker_color"] = "red"

p_left.data[2]["marker_color"] = "blue"

p_left.data[3]["marker_color"] = "green"

p_right.data[1]["marker_color"] = "red"

p_right.datal[2]["marker_color"] = "blue"

p_right.data[3]["marker_color"] = "green"

p_left.data[1]["name"] = "groupl"

p_left.datal[2]["name"] "group2"

p_left.data[3]["name"] "group3"

p_left.layout["title"] = "Component 1 vs Component 2"

p_right.layout["title"] = "Component 2 vs Component 3"

p_left.layout["xaxis_title"] = "nmf-1"

p_left.layout["yaxis_title"] = "nmf-2"

p_right.layout["xaxis_title"] = "nmf-2"

p_right.layout["yaxis_title"] = "nmf-3"

plot([p_left p_right])

end

group=vcat(repeat(["groupl"],inner=100),
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repeat(["group2"],inner=100),
repeat(["group3"],inner=100))

NMF based on Alpha-Divergence

This example demonstrates NMF using the a-divergence as the loss function (Figure 2). By
setting alpha=2, the objective corresponds to the Pearson divergence. The input data is
assumed to be a dense matrix compressed with Zstandard (.zst format).

out_nmf_alpha = nmf(input=joinpath(tmp, "Data.zst"),
dim=3, alpha=2, numepoch=30, algorithm="alpha")

subplots(out_nmf_alpha, group)
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Figure 2: Output of nmf against binarized CSV format.

Sparse-NMF based on Beta-Divergence

This example performs NMF on a sparse matrix using the S-divergence (Figure 3). The input
is a MM formatted sparse matrix file (.mtx.zst). When beta=1, the loss corresponds to the
Kullback-Leibler divergence, and sparse-specific optimization is used internally.

out_sparse_nmf_beta = sparse_nmf(input=joinpath(tmp, "Data.mtx.zst"),
dim=3, beta=1, numepoch=30, algorithm="beta")

subplots(out_sparse_nmf_beta, group)
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Figure 3: Output of sparse_nmf against binarized MM format.

Related work

There are various implementations of NMF (Boureima, 2024; Pedregosa, 2011; Tsuyuzaki,
2023) and some of them support OOC computation or sparse data formats (Lab, 2023;
Pedregosa, 2011). While RcppPlanc/PLANC supports both OOC and R'’s internal sparse format
(dgCMatrix), OnlineNMF. j1 is designed to handle language-agnostic sparse formats such as
MM and Binary COO (BinCOO), enabling seamless integration with external data pipelines.

Function Name Language OOC Sparse Format
nnTensor: :NMF R No -
sklearn.decomposition.NMF Python No -
pyDNMFk Python No -
NMF.MultUpdate Julia No -
sklearn.decomposition.MiniBatchNMF Python Yes -
RcppPlanc/PLANC R/C++ Yes dgCMatrix
OnlineNMF.j1l Julia Yes MM/BinCOO
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