The Journal of Open Source Software

DOI: 10.21105/joss.09294

Software
= Review 7
= Repository &
= Archive 7

Editor: Nikoleta Glynatsi
Reviewers:

= Qcapitalaslash

= Q@Franzilesi

Submitted: 03 September 2025
Published: 27 January 2026

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

modepy: Basis Functions, Interpolation, and
Quadrature (not just) for Finite Elements

Andreas Kloeckner
Gibson

1 Alexandru Fikl 3, Thomas

4. and Addison Alvey-Blanco!

2 Xiaoyu Wei

1 Siebel School of Computing and Data Science, University of lllinois at Urbana-Champaign, US 2
Institute for Advanced Environmental Research (ICAM), West University of Timisoara, Romania 3
Pathlit, US 4 Advanced Micro Devices Inc., US

Summary

modepy is a Python library for defining reference elements, equipping them with appropriate
approximation spaces, and numerically performing calculus operations (derivatives, integrals)
on those spaces. It is written in pure, type-annotated Python 3, offering comprehensive
documentation and minimal runtime dependencies (mainly NumPy).

modepy focuses on high-order accuracy — given an element size h, this refers to the asymptotic
decay of the approximation error as O(h™), for n > 3, assuming sufficient smoothness of the
solution being approximated. For a problem in d dimensions, the number of unknowns scales as
O(h_d). Therefore, if accuracy is desired at manageable cost, high-order methods are crucial.

A popular approach for accurate approximation of functions on geometrically complex domains
is the use of unstructured discretizations, e.g. in the Finite Element Method (FEM). The
geometry is typically represented as a disjoint union (a “mesh”) of primitive geometric shapes,
most often simplices and quadrilaterals. Given the means to perform calculus operations on
these reference elements and mapping functions from them to the global elements, calculus
operations become available on the entire domain. These primitives are chiefly useful in the
numerical solution of integral and (partial) differential equations. Additional applications
include computer graphics, Computer Aided Design (CAD), and robotics. Those, in turn, can
be used to model many physical phenomena, including fluid flow, electromagnetism, and solid
mechanics. modepy has been used to construct FEM solvers (Glusa, 2021; Kléckner & others,
2025a) and integral equation solvers (Kléckner & others, 2025b) that run on both CPUs and
GPUs.

Statement of need

The functionality outlined above is often embedded in an ad-hoc manner in larger codes,
restricting scope and reusability. modepy addresses this need by providing a reusable,
generalizable, and composable implementation.

There are several other libraries in the literature with similar goals, but important differences
and limitations. FInAT (Ham et al., 2025) (and the earlier FIAT (Homolya et al., 2025)) offers
reference elements and basis functions, but is tightly coupled to the FEniCS/Firedrake ecosystem.
Similarly, StartUpDG. j1 (Chan et al., 2024) has a focus on the needs of discontinuous Galerkin
FEM in the Trixi framework. QuadPy (Schlémer et al., 2021) provides access to quadrature
rules, but it is no longer open source and lacks modepy's composability. minterpy (Wicaksono
et al., 2025), meanwhile, deals exclusively with polynomial interpolation, with a focus on sparse
grids.

Kloeckner et al. (2026). modepy: Basis Functions, Interpolation, and Quadrature (not just) for Finite Elements. Journal of Open Source Software, 1
11(117), 9294. https://doi.org/10.21105/joss.09294.


https://orcid.org/0000-0003-1228-519X
https://orcid.org/0000-0002-0552-5936
https://orcid.org/0000-0001-7063-7865
https://orcid.org/0000-0002-7978-6848
https://doi.org/10.21105/joss.09294
https://github.com/openjournals/joss-reviews/issues/9294
https://github.com/inducer/modepy
https://doi.org/10.5281/zenodo.18304836
https://nikoleta-v3.github.io
https://orcid.org/0000-0002-2943-3622
https://github.com/capitalaslash
https://github.com/FranziLesi
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.09294

The Journal of Open Source Software

The solvers served by modepy typically have tight cost constraints, often adopting HPC
techniques (GPU, MPI, etc.). To facilitate separation of implementation and high-performance
concerns from the core numerical method, modepy adopts a two-pronged approach. First, if it
suffices to represent operations as data in matrix or tabular form, execution of modepy code is
not needed in a cost-constrained setting. For example, nodes and bilinear forms on reference
elements can generally be pre-computed and tabulated. Second, if this tabulation approach
falls short, modepy provides data structures to reveal additional internal structure.

Tensor product elements provide an example of this. In this instance, many operator matrices
permit a Kronecker product factorization that significantly reduces the asymptotic complexity
of a matrix-vector product in higher dimensions (Orszag, 1980). modepy exposes functionality
that allows reshaping degrees of freedom arrays to take advantage of such factorizations.
Another prominent example is the evaluation of basis functions at points known only at
runtime. To facilitate efficient evaluation, modepy allows its functions to be “traced”, in the
sense of lazy or deferred evaluation. The resulting expression graph is represented by the
pymbolic (Kléckner et al., 2024) software library, that can interoperate with Python ASTs
(Python Software Foundation, 2024), SymPy (Meurer et al., 2017), SymEngine (Certfk et al.,
2013), etc., for straightforward generation of high-performance code.

Overview

The high-level concepts available in modepy are shapes (i.e. reference domains), modes (i.e. the
basis functions), and nodes (i.e. the degrees of freedom). These are implemented in a user-
extensible fashion using the singledispatch mechanism, with inspiration taken from common
idiomatic usage in Julia (Bezanson et al., 2017).

Shapes

The geometry of a reference element is described in modepy by the Shape class. Built-in support
exists for Simplex and Hypercube geometries, encompassing the commonly used interval,
triangle, tetrahedron, quadrilateral, and hexahedral shapes (see Figure 1). TensorProductShape
can be used to compose additional shapes (e.g. prims, as generated by, e.g. gmsh (Geuzaine &
Remacle, 2009)).

1-simplex 2-simplex 3-simplex

Figure 1: Domains corresponding to the one-, two-, and three-dimensional simplices.

Modes and Spaces

To perform calculus operations, each reference element can be equipped with a function space
described by the FunctionSpace class. These represent a finite-dimensional space of functions
¢; + D — R, where D is the reference element domain, and no specific choice of basis.
Predefined choices include the PN space, containing polynomials of total degree at most N, and
the QN space, containing polynomials of maximum degree at most IN. As with shapes, these
spaces can be combined using TensorProductSpace. A Bastis object is available separately,
giving access to basis functions and their derivatives, for, e.g., the monomials, general Jacobi

Kloeckner et al. (2026). modepy: Basis Functions, Interpolation, and Quadrature (not just) for Finite Elements. Journal of Open Source Software, 2
11(117), 9294. https://doi.org/10.21105/joss.09294.


https://doi.org/10.21105/joss.09294

The Journal of Open Source Software

polynomials, and the Proriol-Koornwinder-Dubiner-Owens (PKDO) basis from Dubiner (1991)
(see Figure 2).

‘ e 4 Z 4
‘vw VWi/:?V\ ‘i‘

|

Figure 2: PKDO basis functions for the triangle.

Nodes

A final component in an FEM discretization (Brenner & Scott, 2007, sec. 3.1) is a set
of ‘degrees of freedom’' (‘DOFs’) that uniquely identify a certain function in the span of a
basis. modepy supports modal DOFs (i.e. basis coefficients) and nodal DOFs (i.e. function or
derivative values at a point). On simplices, the “warp-and-blend” nodes (Warburton, 2007)
are available, and on the hypercube, standard tensor product nodes are constructed from
one-dimensional Legendre-Gauss(-Lobatto) nodes. modepy can also directly interoperate with
the recursivenodes library described in Isaac (2020), which offers additional well-conditioned
nodes on the simplex.

Quadrature

modepy also offers a wide array of quadrature rules that can be used on each reference element.
For the interval, Clenshaw—Curtis, Fejér, and Jacobi-Gauss(-Lobatto) are provided. Many more
state-of-the-art rules are available, typically up to high order n > 20 from (Grundmann &
Moller, 1978; Jaskowiec & Sukumar, 2021; Vioreanu & Rokhlin, 2014; Witherden & Vincent,
2015; Xiao & Gimbutas, 2010) (see Figure 3). There is also functionality (Vioreanu & Rokhlin,
2014) to allow constructing novel quadratures on a given domain.

Figure 3: (left) Vioreanu—Rokhlin quadrature points of order 11 and (right) Witherden—Vincent quadrature
points of order 11.

Matrices

modepy'’s functionality is rounded out by various tabulation and matrix generation functions.
This includes the ability to tabulate operator matrices for fairly general bilinear forms used in
FEM.

Kloeckner et al. (2026). modepy: Basis Functions, Interpolation, and Quadrature (not just) for Finite Elements. Journal of Open Source Software, 3
11(117), 9294. https://doi.org/10.21105/joss.09294.


https://doi.org/10.21105/joss.09294

The Journal of Open Source Software

Acknowledgements

A. Fikl was supported by the Office of Naval Research (ONR) as part of the Multidisciplinary
University Research Initiatives (MURI) Program, under Grant Number N00014-16-1-2617.
A. Kléckner was supported by the US National Science Foundation under award number
DMS-2410943, and by the US Department of Energy under award number DE-NA0003963.

References

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59, 65-98. https://doi.org/10.1137/141000671

Brenner, S., & Scott, R. (2007). The mathematical theory of finite element methods. Springer
Science & Business Media. ISBN: 9780387759333

Certik, O., Fernando, |., Garg, S., Rathnayake, T., & others. (2013). SymEngine: A fast
symbolic manipulation library written in C++. https://github.com/symengine/symengine

Chan, J., Knapp, D., McCallum, M., Ranocha, H., Wang, V. X., & Markert, J. (2024).
StartUpDG._jl: Reference elements and physical meshes for DG (Version v1.1.5). https:
//github.com/jlchan /StartUpDG.jl

Dubiner, M. (1991). Spectral methods on triangles and other domains. Journal of Scientific
Computing, 6, 345-390. https://doi.org/10.1007/bf01060030

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-d finite element mesh generator with
built-in pre-and post-processing facilities. International Journal for Numerical Methods in
Engineering, 79(11), 1309-1331. https://doi.org/10.1002/nme.2579

Glusa, C. (2021). PyNucleus: A finite element code that specifically targets nonlocal operators.
Sandia National Lab (SNL-NM), Albuquerque, NM (United States). https://github.com/
sandialabs/PyNucleus

Grundmann, A., & Méller, H. M. (1978). Invariant integration formulas for the n-simplex
by combinatorial methods. SIAM Journal on Numerical Analysis, 15, 282-290. https:
//doi.org/10.1137/0715019

Ham, D. A., Homolya, M., Kirby, R., Mitchell, L., Brubeck, P., cyruscycheng2l, FAznaran,
ksagiyam, Scroggs, M., Farrell, P. E., Justincrum, Ward, C., celdred, Bendall, T., Betteridge,
J., & FabianL1908. (2025). FInAT: A smarter library of finite elements (Version
Firedrake_20250331.0). Zenodo. https://doi.org/10.5281/zenodo.15114385

Homolya, M., Brubeck, P., Ham, D. A., Kirby, R., Mitchell, L., Blechta, J., Rognes, M. E.,
Wells, G. N., Logg, A., cyruscycheng?2l, Gibson, T. H., Ring, J., Yashchuk, I., Justincrum,
k-b-oelgaard, ksagiyam, Richardson, C., mer, N. S., Nixon-Hill, R. W., .. Scroggs, M. (2025).
FIAT: 2025.4.0 (Version 2025.4.0). Zenodo. https://doi.org/10.5281/zenodo.15302339

Isaac, T. (2020). Recursive, parameter-free, explicitly defined interpolation nodes for simplices.
SIAM Journal on Scientific Computing, 42, A4046—a4062. https://doi.org/10.1137/
20m1321802

Jaskowiec, J., & Sukumar, N. (2021). High-order symmetric cubature rules for tetrahedra
and pyramids. International Journal for Numerical Methods in Engineering, 122, 148-171.
https://doi.org/10.1002/nme.6528

Klockner, A., & others. (2025a). Grudge: An environment for discontinuous Galerkin
discretizations (Version hash:193100a). https://github.com/inducer/grudge

Klockner, A., & others. (2025b). Pytential: Evaluate layer and volume potentials accurately
(Version hash:7395b97f). https://github.com/inducer/pytential

Kloeckner et al. (2026). modepy: Basis Functions, Interpolation, and Quadrature (not just) for Finite Elements. Journal of Open Source Software, 4
11(117), 9294. https://doi.org/10.21105/joss.09294.


https://doi.org/10.1137/141000671
https://github.com/symengine/symengine
https://github.com/jlchan/StartUpDG.jl
https://github.com/jlchan/StartUpDG.jl
https://doi.org/10.1007/bf01060030
https://doi.org/10.1002/nme.2579
https://github.com/sandialabs/PyNucleus
https://github.com/sandialabs/PyNucleus
https://doi.org/10.1137/0715019
https://doi.org/10.1137/0715019
https://doi.org/10.5281/zenodo.15114385
https://doi.org/10.5281/zenodo.15302339
https://doi.org/10.1137/20m1321802
https://doi.org/10.1137/20m1321802
https://doi.org/10.1002/nme.6528
https://github.com/inducer/grudge
https://github.com/inducer/pytential
https://doi.org/10.21105/joss.09294

SS

The Journal of Open Source Software

Klockner, A., Wala, M., Fernando, |., Kulkarni, K., Fikl, A., Weiner, Z., Kempf, D., Ham, D.
A., Mitchell, L., Wilcox, L. C., Diener, M., Kapyshin, P., Raksi, R., & Gibson, T. H. (2024).
Pymbolic: A package to do symbolic operations for code generation (Version v2024.2.2).
Zenodo. https://doi.org/10.5281/zenodo.14526145

Meurer, A., Smith, C. P., Paprocki, M., Certik, O., Kirpichev, S. B., Rocklin, M., Kumar, A.,
Ivanov, S., Moore, J. K., Singh, S., & others. (2017). SymPy: Symbolic computing in
Python. PeerJ Computer Science, 3, €103. https://doi.org/10.7717 /peerj-cs.103

Orszag, S. A. (1980). Spectral methods for problems in complex geometries. Journal of
Computational Physics, 37, 70-92. https://doi.org/10.1016/0021-9991(80)90005-4

Python Software Foundation. (2024). ast — abstract syntax trees. https://docs.python.org/
3/library/ast.html

Schldmer, N., Papior, N., Arnold, D., Blechta, J., & Zetter, R. (2021). QuadPy: Numerical
integration (quadrature, cubature) in Python (Version v0.16.10). Zenodo. https://doi.org/
10.5281/zenodo.5541216

Vioreanu, B., & Rokhlin, V. (2014). Spectra of multiplication operators as a numerical
tool. SIAM Journal on Scientific Computing, 36, A267—a288. https://doi.org/10.1137/
110860082

Warburton, T. (2007). An explicit construction of interpolation nodes on the simplex. Journal
of Engineering Mathematics, 56, 247-262. https://doi.org/10.1007 /s10665-006-9086-6

Wicaksono, D., Acosta, U. H., Veettil, S. K. T., Kissinger, J., & Hecht, M. (2025). Minterpy:
Multivariate polynomial interpolation in Python. Journal of Open Source Software, 10(109),
7702. https://doi.org/10.21105/joss.07702

Witherden, F. D., & Vincent, P. E. (2015). On the identification of symmetric quadrature rules
for finite element methods. Computers & Mathematics With Applications, 69, 1232-1241.
https://doi.org/10.1016/j.camwa.2015.03.017

Xiao, H., & Gimbutas, Z. (2010). A numerical algorithm for the construction of efficient
quadrature rules in two and higher dimensions. Computers & Mathematics With
Applications, 59, 663-676. https://doi.org/10.1016/j.camwa.2009.10.027

Kloeckner et al. (2026). modepy: Basis Functions, Interpolation, and Quadrature (not just) for Finite Elements. Journal of Open Source Software, 5
11(117), 9294. https://doi.org/10.21105/joss.09294.


https://doi.org/10.5281/zenodo.14526145
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1016/0021-9991(80)90005-4
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://doi.org/10.5281/zenodo.5541216
https://doi.org/10.5281/zenodo.5541216
https://doi.org/10.1137/110860082
https://doi.org/10.1137/110860082
https://doi.org/10.1007/s10665-006-9086-6
https://doi.org/10.21105/joss.07702
https://doi.org/10.1016/j.camwa.2015.03.017
https://doi.org/10.1016/j.camwa.2009.10.027
https://doi.org/10.21105/joss.09294

	Summary
	Statement of need
	Overview
	Shapes
	Modes and Spaces
	Nodes
	Quadrature
	Matrices

	Acknowledgements
	References

