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Summary

modepy is a Python library for defining reference elements, equipping them with appropriate
approximation spaces, and numerically performing calculus operations (derivatives, integrals)
on those spaces. It is written in pure, type-annotated Python 3, offering comprehensive
documentation and minimal runtime dependencies (mainly NumPy).

modepy focuses on high-order accuracy — given an element size h, this refers to the asymptotic
decay of the approximation error as O(h™), for n > 3, assuming sufficient smoothness of the
solution being approximated. For a problem in d dimensions, the number of unknowns scales as
O(h_d). Therefore, if accuracy is desired at manageable cost, high-order methods are crucial.

A popular approach for accurate approximation of functions on geometrically complex domains
is the use of unstructured discretizations, e.g. in the Finite Element Method (FEM). The
geometry is typically represented as a disjoint union (a “mesh”) of primitive geometric shapes,
most often simplices and quadrilaterals. Given the means to perform calculus operations on
these reference elements and mapping functions from them to the global elements, calculus
operations become available on the entire domain. These primitives are chiefly useful in the
numerical solution of integral and (partial) differential equations. Additional applications
include computer graphics, Computer Aided Design (CAD), and robotics. Those, in turn, can
be used to model many physical phenomena, including fluid flow, electromagnetism, and solid
mechanics. modepy has been used to construct FEM solvers (Glusa, 2021; Kléckner & others,
2025a) and integral equation solvers (Kléckner & others, 2025b) that run on both CPUs and
GPUs.

Statement of need

The functionality outlined above is often embedded in an ad-hoc manner in larger codes,
restricting scope and reusability. modepy addresses this need by providing a reusable,
generalizable, and composable implementation.

There are several other libraries in the literature with similar goals, but important differences
and limitations. FInAT (Ham et al., 2025) (and the earlier FIAT (Homolya et al., 2025)) offers
reference elements and basis functions, but is tightly coupled to the FEniCS/Firedrake ecosystem.
Similarly, StartUpDG. j1 (Chan et al., 2024) has a focus on the needs of discontinuous Galerkin
FEM in the Trixi framework. QuadPy (Schlémer et al., 2021) provides access to quadrature
rules, but it is no longer open source and lacks modepy's composability. minterpy (Wicaksono
et al., 2025), meanwhile, deals exclusively with polynomial interpolation, with a focus on sparse
grids.
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The solvers served by modepy typically have tight cost constraints, often adopting HPC
techniques (GPU, MPI, etc.). To facilitate separation of implementation and high-performance
concerns from the core numerical method, modepy adopts a two-pronged approach. First, if it
suffices to represent operations as data in matrix or tabular form, execution of modepy code is
not needed in a cost-constrained setting. For example, nodes and bilinear forms on reference
elements can generally be pre-computed and tabulated. Second, if this tabulation approach
falls short, modepy provides data structures to reveal additional internal structure.

Tensor product elements provide an example of this. In this instance, many operator matrices
permit a Kronecker product factorization that significantly reduces the asymptotic complexity
of a matrix-vector product in higher dimensions (Orszag, 1980). modepy exposes functionality
that allows reshaping degrees of freedom arrays to take advantage of such factorizations.
Another prominent example is the evaluation of basis functions at points known only at
runtime. To facilitate efficient evaluation, modepy allows its functions to be “traced”, in the
sense of lazy or deferred evaluation. The resulting expression graph is represented by the
pymbolic (Kléckner et al., 2024) software library, that can interoperate with Python ASTs
(Python Software Foundation, 2024), SymPy (Meurer et al., 2017), SymEngine (Certfk et al.,
2013), etc., for straightforward generation of high-performance code.

Overview

The high-level concepts available in modepy are shapes (i.e. reference domains), modes (i.e. the
basis functions), and nodes (i.e. the degrees of freedom). These are implemented in a user-
extensible fashion using the singledispatch mechanism, with inspiration taken from common
idiomatic usage in Julia (Bezanson et al., 2017).

Shapes

The geometry of a reference element is described in modepy by the Shape class. Built-in support
exists for Simplex and Hypercube geometries, encompassing the commonly used interval,
triangle, tetrahedron, quadrilateral, and hexahedral shapes (see Figure 1). TensorProductShape
can be used to compose additional shapes (e.g. prims, as generated by, e.g. gmsh (Geuzaine &
Remacle, 2009)).

1-simplex 2-simplex 3-simplex

Figure 1: Domains corresponding to the one-, two-, and three-dimensional simplices.

Modes and Spaces

To perform calculus operations, each reference element can be equipped with a function space
described by the FunctionSpace class. These represent a finite-dimensional space of functions
¢; + D — R, where D is the reference element domain, and no specific choice of basis.
Predefined choices include the PN space, containing polynomials of total degree at most N, and
the QN space, containing polynomials of maximum degree at most IN. As with shapes, these
spaces can be combined using TensorProductSpace. A Bastis object is available separately,
giving access to basis functions and their derivatives, for, e.g., the monomials, general Jacobi
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polynomials, and the Proriol-Koornwinder-Dubiner-Owens (PKDO) basis from Dubiner (1991)
(see Figure 2).
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Figure 2: PKDO basis functions for the triangle.

Nodes

A final component in an FEM discretization (Brenner & Scott, 2007, sec. 3.1) is a set
of ‘degrees of freedom’' (‘DOFs’) that uniquely identify a certain function in the span of a
basis. modepy supports modal DOFs (i.e. basis coefficients) and nodal DOFs (i.e. function or
derivative values at a point). On simplices, the “warp-and-blend” nodes (Warburton, 2007)
are available, and on the hypercube, standard tensor product nodes are constructed from
one-dimensional Legendre-Gauss(-Lobatto) nodes. modepy can also directly interoperate with
the recursivenodes library described in Isaac (2020), which offers additional well-conditioned
nodes on the simplex.

Quadrature

modepy also offers a wide array of quadrature rules that can be used on each reference element.
For the interval, Clenshaw—Curtis, Fejér, and Jacobi-Gauss(-Lobatto) are provided. Many more
state-of-the-art rules are available, typically up to high order n > 20 from (Grundmann &
Moller, 1978; Jaskowiec & Sukumar, 2021; Vioreanu & Rokhlin, 2014; Witherden & Vincent,
2015; Xiao & Gimbutas, 2010) (see Figure 3). There is also functionality (Vioreanu & Rokhlin,
2014) to allow constructing novel quadratures on a given domain.

Figure 3: (left) Vioreanu—Rokhlin quadrature points of order 11 and (right) Witherden—Vincent quadrature
points of order 11.

Matrices

modepy'’s functionality is rounded out by various tabulation and matrix generation functions.
This includes the ability to tabulate operator matrices for fairly general bilinear forms used in
FEM.
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