
assembly-theory: Open, Reproducible Calculation of
Assembly Indices
Devansh Vimal 1, Garrett Parzych 1,2, Olivia M. Smith 1,3, Devendra
Parkar 1,2, Holly Bergen 1,2, Joshua J. Daymude 1,2, and Cole
Mathis 1,3¶

1 Biodesign Center for Biocomputing, Security and Society, Arizona State University, United States of
America 2 School of Computing and Augmented Intelligence, Arizona State University, United States of
America 3 School of Complex Adaptive Systems, Arizona State University, United States of America ¶
Corresponding author

DOI: 10.21105/joss.09318

Software
• Review
• Repository
• Archive

Editor: Gabriela Alessio Robles

Reviewers:
• @abhishektiwari
• @amcandio

Submitted: 07 August 2025
Published: 06 January 2026

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
We present assembly-theory, an open-source, high-performance library for computing assembly
indices of covalently bonded molecular structures. This is a key complexity measure of
assembly theory, a recent theoretical framework quantifying evolutionary selection across
chemical, biological, and engineered systems. assembly-theory is designed for researchers
and practitioners alike, providing (i) extensible, high-performance Rust implementations of
assembly index calculation algorithms, (ii) comprehensive tests and benchmarks against which
current and future algorithmic improvements can be evaluated, and (iii) Python bindings to
support integration with existing computational pipelines.

Background
Assembly theory (AT) is a recently developed body of theoretical and empirical work char-
acterizing selection in diverse physical systems (Sharma et al., 2023; Walker et al., 2024).
In AT, objects are entities that are finite, distinguishable, decomposable, and persistent in
time. AT characterizes objects by their assembly index, the minimum number of recursive
subconstructions required to construct the object starting from a given set of building blocks
(Jirasek et al., 2024; Seet et al., 2025). To date, AT has most commonly been applied to
molecular chemistry, where bonds are the basic building blocks and the quantity of interest
is the molecular assembly index (MA); see Figure 1 for an example. MA can be measured
for covalently-bonded molecules using standard analytical techniques such as tandem mass
spectrometry as well as infrared and nuclear magnetic resonance spectroscopy (Jirasek et al.,
2024), enabling a novel approach to life detection (Marshall et al., 2021). It has also been
proposed in methods to generate novel therapeutic drugs, identify environmental pollutants,
and gain new insights into evolutionary history (Kahana et al., 2024; Liu et al., 2021).

Statement of Need
Computing MA efficiently remains a challenge. In general, exact MA calculation is NP-hard
(Kempes et al., 2025). Previous software to compute MA have been approximate, closed-
source, platform-dependent, or written in languages rarely used by the broader scientific
community. The original software to compute a split-branch approximation of MA (an
upper bound on the exact value) was written in C++ and depended on the MSVC compiler,
making it difficult to deploy to non-Windows machines (Marshall et al., 2021). Machine-

Vimal et al. (2026). assembly-theory: Open, Reproducible Calculation of Assembly Indices. Journal of Open Source Software, 11(117), 9318.
https://doi.org/10.21105/joss.09318.

1

https://orcid.org/0009-0006-2794-8995
https://orcid.org/0009-0008-4789-9603
https://orcid.org/0009-0004-2299-3522
https://orcid.org/0009-0009-0133-8875
https://orcid.org/0009-0004-3570-5120
https://orcid.org/0000-0001-7294-5626
https://orcid.org/0000-0001-8424-9169
https://doi.org/10.21105/joss.09318
https://github.com/openjournals/joss-reviews/issues/9318
https://github.com/DaymudeLab/assembly-theory
https://doi.org/10.5281/zenodo.16764412
https://galessiorob.github.io/index.html
https://orcid.org/0000-0003-0449-5197
https://github.com/abhishektiwari
https://github.com/amcandio
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.09318


learning methods only provide approximate MA values (Gebhard et al., 2022). The more
recent assembly_go computes MA exactly but is written in Go and implements a somewhat
naïve algorithm, yielding prohibitively slow performance even on mid-size molecules (Jirasek
et al., 2024). Finally, the latest assemblycpp-v5 C++ implementation achieves significant
performance milestones through an improved branch-and-bound approach, but lacks parallelism,
has significant readability and maintenance barriers, and until recently was not publicly available
for comparison or verification by the community (Seet et al., 2025).

Building Blocks
(Bonds)

Minimum-length Path
(6 Steps)

Candidate Path
(7 Steps)

Target Structure
(Input Molecule)

Figure 1: Assembly Pathways for Anthracene. Starting with bonds as building blocks (yellow), a joining
operation yields progressively larger structures by combining any two compatible structures that have
already been constructed (arrows). These intermediate structures must obey valence rules but otherwise
do not have to be physically accessible or chemically synthesizable. There may be many assembly
pathways from building blocks to a target structure—in this case, anthracene (green)—but the length of
any shortest such pathway (blue) is that structure’s assembly index.

With assembly-theory, we provide an open-source, fully documented, extensible, and high-
performance library for assembly index calculation. It moves beyond an implementation of a
single algorithm, instead acting as a framework and source of ground truth within which current
and future algorithmic approaches can be validated and compared. The main implementation
is written in Rust, which we chose for its cross-platform support, memory safety, performant
run time, convenient parallelism, and integrated testing and documentation (Perkel, 2020).
We also leverage modern Rust tooling to provide native Python bindings, enabling ease of use
for scientific practitioners and integration with existing Python cheminformatics libraries like
RDKit (RDKit, 2024) without sacrificing Rust’s underlying advantages.

Tests and Benchmarks
assembly-theory includes test and benchmark suites for software validation and performance
evaluation, respectively. Both use curated reference datasets representing different classes
of molecules, chosen for their structural diversity and approachable run times on commodity
hardware. These reference data are sampled from:

• GDB-13, a database of enumerated chemical structures containing carbon, hydrogen,
nitrogen, oxygen, sulfur, and chlorine that are constrained only by valence rules and
quantum mechanics (Blum & Reymond, 2009).

• GDB-17, an extension of GDB-13 that includes additional nuclei such as the halogens
flourine and iodine (Ruddigkeit et al., 2012).

Vimal et al. (2026). assembly-theory: Open, Reproducible Calculation of Assembly Indices. Journal of Open Source Software, 11(117), 9318.
https://doi.org/10.21105/joss.09318.

2

https://doi.org/10.21105/joss.09318


• KEGG COMPOUND, a database of small molecules, biopolymers, and other biologically
relevant substances (Kanehisa, 2019; Kanehisa et al., 2023; Kanehisa & Goto, 2000).

• COCONUT, a database of natural products (secondary metabolites) offering a rich source
of evolved chemical complexity (Chandrasekhar et al., 2025; Sorokina et al., 2021).

The assembly-theory test suite (run with cargo test) contains unit tests validating internal
functionality and integration tests verifying the calculation of correct assembly indices for all
molecules in our reference datasets. Each reference dataset contains an ma-index.csv file
with ground-truth assembly indices calculated using assemblycpp-v5 (Seet et al., 2025).

Our benchmark suite (run with cargo bench) evaluates the performance of each granular
phase of assembly index calculation over entire reference datasets. We leverage the criterion

Rust crate to automatically collect detailed timing statistics and create performance reports.

Performance Evaluation
Table 1 shows a comparison of MA calculation times across the three existing open-source
implementations on four curated reference datasets. Details of this benchmark and its reference
datasets can be found in paper/README. assembly_go is orders of magnitude slower than the
other two implementations, and the performance gap widens as molecule sizes increase (checks
and coconut_55). Between assemblycpp-v5 and assembly-theory, our assembly-theory

implementation performs 1.76–2.27x faster on average for all but the smallest molecules
(gdb13_1201), where assemblycpp-v5 achieves a mean speedup of 1.52x.

Table 1: Mean benchmark execution times for assembly_go (6ec034f), assemblycpp-v5 (f920903), and
assembly-theory (v0.6.0) across reference datasets. The benchmark times the MA calculation of all
molecules in a given dataset in sequence, excluding the time required to parse and load .mol files into
internal molecular graph representations. Each benchmark was run on a Linux machine with a 5.7 GHz
Ryzen 9 7950X CPU (16 cores) and 64 GB of memory. assembly_go and assembly-theory are parallel
implementations and used all 16 cores, while assemblycpp-v5 is serial and used only one. Means and
95% confidence intervals are reported over 20 samples per software–dataset pair, except those marked
with an ∗, which have prohibitively long run times and thus ran only once.

assembly_go assemblycpp-v5 assembly-theory

gdb13_1201 0.938 s ± 6.00% 0.107 s ± 0.19% 0.163 s ± 0.53%
gdb17_200 46.523 s ± 1.00% 0.318 s ± 0.24% 0.181 s ± 0.71%
checks 215.194 s ± 0.55% 0.053 s ± 0.88% 0.025 s ± 0.24%
coconut_55 1.34 h∗ 0.345 s ± 0.26% 0.152 s ± 0.45%

Algorithmically, the default MA search strategies of assemblycpp-v5 and our assembly-theory
are currently very similar. Our speedup on larger molecules is likely due primarily to parallelism,
which assemblycpp-v5 lacks. However, we emphasize that assembly-theory offers advantages
beyond performance, including native Python interoperability, detailed documentation, and a
modular architecture that enables the implementation and comparison of current and future
algorithmic approaches within the same framework without language-based confounding factors.

Availability and Governance
assembly-theory is available as a source code repository on GitHub, as a Rust crate on
crates.io, and as a Python package on PyPI. Following the standard practice for Rust projects,
assembly-theory is dual-licensed under the MIT and Apache-2.0 licenses. Contributing
guidelines and project governance are described in our README. Benchmarks and performance
evaluations supporting this manuscript are available on Zenodo (AgentElement et al., 2025).

Vimal et al. (2026). assembly-theory: Open, Reproducible Calculation of Assembly Indices. Journal of Open Source Software, 11(117), 9318.
https://doi.org/10.21105/joss.09318.

3

https://bheisler.github.io/criterion.rs/criterion/
https://github.com/croningp/assembly_go/tree/6ec034f7d4083e42adc9584c3958c604a8ac8045
https://github.com/croningp/assemblycpp-v5/tree/f9209034b0851d03282322bb6be697beaf030dda
https://github.com/DaymudeLab/assembly-theory/releases/tag/v0.6.0
https://github.com/DaymudeLab/assembly-theory
https://crates.io/crates/assembly-theory
https://pypi.org/project/assembly-theory/
https://doi.org/10.21105/joss.09318


Author Contributions
DV was the primary software developer (architecture, command-line interface, molecule
representations, unit tests, parallelism, performance engineering). GP, DV, and CM formalized
the core algorithm design. GP and HB implemented the algorithm’s bounding strategies. DP
and DV implemented the .mol file parser. CM and JJD implemented the Python interface.
OMS curated all reference datasets and assembly index ground truths with input from CM. JJD
created the integration tests and benchmarks. JJD conducted and analyzed the benchmark
shown in Table 1. JJD and CM wrote the paper.

Acknowledgements
GP and JJD are supported in part by NSF award CCF-2312537. DV, OMS, and CM acknowledge
support from the ASU Biodesign Institute.

References
AgentElement, Daymude, J., Mathis, C., Garrett-Pz, Smith, O., Parkar, D., & Bergen, H.

(2025). assembly-theory: Open, reproducible calculation of assembly indices (joss-final).
Zenodo. https://doi.org/10.5281/zenodo.16764412

Blum, L. C., & Reymond, J.-L. (2009). 970 million druglike small molecules for virtual screening
in the chemical universe database GDB-13. Journal of the American Chemical Society,
131(25), 8732–8733. https://doi.org/10.1021/ja902302h

Chandrasekhar, V., Rajan, K., Kanakam, S. R. S., Sharma, N., Weißenborn, V., Schaub,
J., & Steinbeck, C. (2025). COCONUT 2.0: A comprehensive overhaul and curation
of the Collection of Open Natural Products database. Nucleic Acids Research, 53(D1),
D634–D643. https://doi.org/10.1093/nar/gkae1063

Gebhard, T. D., Bell, A. C., Gong, J., Hastings, J. J. A., Fricke, G. M., Cabrol, N., Sandford, S.,
Phillips, M., Warren-Rhodes, K., & Baydin, A. G. (2022). Inferring molecular complexity
from mass spectrometry data using machine learning. Machine Learning and the Physical
Sciences Workshop at NeurIPS 2022, 1–7.

Jirasek, M., Sharma, A., Bame, J. R., Mehr, S. H. M., Bell, N., Marshall, S. M., Mathis,
C., MacLeod, A., Cooper, G. J. T., Swart, M., Mollfulleda, R., & Cronin, L. (2024).
Investigating and quantifying molecular complexity using assembly theory and spectroscopy.
ACS Central Science, 10(5), 1054–1064. https://doi.org/10.1021/acscentsci.4c00120

Kahana, A., MacLeod, A., Mehr, H., Sharma, A., Carrick, E., Jirasek, M., Walker, S. I., &
Cronin, L. (2024). Constructing the molecular tree of life using assembly theory and mass
spectrometry (No. 2408.09305). arXiv. https://doi.org/10.48550/arxiv.2408.09305

Kanehisa, M. (2019). Toward understanding the origin and evolution of cellular organisms.
Protein Science, 28(11), 1947–1951. https://doi.org/10.1002/pro.3715

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023).
KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research,
51(D1), D587–D592. https://doi.org/10.1093/nar/gkac963

Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Research, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27

Kempes, C. P., Lachmann, M., Iannaccone, A., Matthew Fricke, G., Redwan Chowdhury, M.,
Walker, S. I., & Cronin, L. (2025). Assembly theory and its relationship with computational
complexity. Npj Complexity, 2(1), 27. https://doi.org/10.1038/s44260-025-00049-9

Vimal et al. (2026). assembly-theory: Open, Reproducible Calculation of Assembly Indices. Journal of Open Source Software, 11(117), 9318.
https://doi.org/10.21105/joss.09318.

4

https://doi.org/10.5281/zenodo.16764412
https://doi.org/10.1021/ja902302h
https://doi.org/10.1093/nar/gkae1063
https://doi.org/10.1021/acscentsci.4c00120
https://doi.org/10.48550/arxiv.2408.09305
https://doi.org/10.1002/pro.3715
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1038/s44260-025-00049-9
https://doi.org/10.21105/joss.09318


Liu, Y., Mathis, C., Bajczyk, M. D., Marshall, S. M., Wilbraham, L., & Cronin, L. (2021).
Exploring and mapping chemical space with molecular assembly trees. Science Advances,
7 (39), eabj2465. https://doi.org/10.1126/sciadv.abj2465

Marshall, S. M., Mathis, C., Carrick, E., Keenan, G., Cooper, G. J. T., Graham, H., Craven, M.,
Gromski, P. S., Moore, D. G., Walker, Sara. I., & Cronin, L. (2021). Identifying molecules
as biosignatures with assembly theory and mass spectrometry. Nature Communications,
12(1), 3033. https://doi.org/10.1038/s41467-021-23258-x

Perkel, J. M. (2020). Why scientists are turning to Rust. Nature, 588(7836), 185–186.
https://doi.org/10.1038/d41586-020-03382-2

RDKit: Open-source cheminformatics. (2024). https://doi.org/10.5281/zenodo.591637

Ruddigkeit, L., Van Deursen, R., Blum, L. C., & Reymond, J.-L. (2012). Enumeration of
166 billion organic small molecules in the chemical universe database GDB-17. Journal
of Chemical Information and Modeling, 52(11), 2864–2875. https://doi.org/10.1021/
ci300415d

Seet, I., Patarroyo, K. Y., Siebert, G., Walker, S. I., & Cronin, L. (2025). Rapid exploration of
the assembly chemical space of molecular graphs. Journal of Chemical Information and
Modeling, 65(24), 13203–13214. https://doi.org/10.1021/acs.jcim.5c01964

Sharma, A., Czégel, D., Lachmann, M., Kempes, C. P., Walker, S. I., & Cronin, L. (2023).
Assembly theory explains and quantifies selection and evolution. Nature, 622(7982),
321–328. https://doi.org/10.1038/s41586-023-06600-9

Sorokina, M., Merseburger, P., Rajan, K., Yirik, M. A., & Steinbeck, C. (2021). COCONUT
online: Collection of Open Natural Products database. Journal of Cheminformatics, 13(1),
2. https://doi.org/10.1186/s13321-020-00478-9

Walker, S. I., Mathis, C., Marshall, S., & Cronin, L. (2024). Experimentally measured assembly
indices are required to determine the threshold for life. Journal of The Royal Society
Interface, 21(220), 20240367. https://doi.org/10.1098/rsif.2024.0367

Vimal et al. (2026). assembly-theory: Open, Reproducible Calculation of Assembly Indices. Journal of Open Source Software, 11(117), 9318.
https://doi.org/10.21105/joss.09318.

5

https://doi.org/10.1126/sciadv.abj2465
https://doi.org/10.1038/s41467-021-23258-x
https://doi.org/10.1038/d41586-020-03382-2
https://doi.org/10.5281/zenodo.591637
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/acs.jcim.5c01964
https://doi.org/10.1038/s41586-023-06600-9
https://doi.org/10.1186/s13321-020-00478-9
https://doi.org/10.1098/rsif.2024.0367
https://doi.org/10.21105/joss.09318

	Summary
	Background
	Statement of Need
	Tests and Benchmarks
	Performance Evaluation
	Availability and Governance
	Author Contributions
	Acknowledgements
	References

