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Summary

Principal Component Analysis (PCA) is a widely used dimensionality reduction technique (Meng,
2016; Stein-O'Brien, 2018), but becomes computationally prohibitive for large data matrices.
Recent advances in single-cell omics have led to datasets with millions of cells, for which standard
PCA implementations often fail to scale. OnlinePCA.jl is a Julia package that addresses this
challenge by providing scalable PCA algorithms (https://github.com/rikenbit/OnlinePCA jl).

Statement of need

PCA is widely used across diverse fields including face recognition (Pablo, 2002), animal
behavior (Stephens, 2008), genomics (Meng, 2016; Stein-O'Brien, 2018), population genetics
(Li, 2023; Novembre, 2008), and molecular dynamics (David, 2014). However, large data
matrices often exceed available memory. An out-of-core (OOC) implementation—where
data subsets are loaded from disk—combined with sparse matrix support is highly desirable
(Tsuyuzaki, 2020).

New features since version 0.3.0

OnlinePCA.jl previously provided OOC PCA functions and tenxpca for 10X-HDF5 sparse
matrices (Tsuyuzaki, 2020). These implementations were designed for “short and fat” matrices
with few rows (samples) and many columns (features). Since version 0.3.0, the following
features have been introduced:

= Support for Matrix Market and Binary COO formats: We implemented mm2bin and
bincoo2bin for binary conversion of sparse data, and extended sumr with a sparse_mode
option.

= sparse_rsvd: Generalizes tenxpca to Matrix Market format.

= exact_ooc_pca: Designed for “tall and thin" matrices, this function computes the
covariance matrix in QOC manner followed by eigendecomposition. Supports CSV, MM,
and BinCOO formats. Results are mathematically equivalent to offline PCA.

= Adjustable chunk size: Both sparse_rsvd and exact_ooc_pca include a chunksize
option for memory control.
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New Feature since v0.3.0
for "Tall & Thin" Matrices

Some out-of-core PCA and utilities functions for
Short & Fat Matrices (N <<M, e.g., single-cell omics)
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Figure 1: Overview of workflow in OnlinePCA jl since v0.3.0.
Example

PCA can be easily reproduced on any machine where Julia is pre-installed by using the following
commands in the Julia REPL window:

Installation

First, install OnlinePCA. j1 from the official Julia package registry or directly from GitHub:
# Install OnlinePCA.jl from Julia General

julia> Pkg.add("OnlinePCA")

# or GitHub for the latest version
julia> Pkg.add(url="https://github.com/rikenbit/0OnlinePCA.jl.git")

Preprocess of CSV

Then, write a synthetic data as a CSV file, convert it to a compressed binary format using
Zstandard, and prepare summary statistics for PCA. Matrix Market (MM) format is also
supported for sparse matrices.

using
using
using
using
using
using

OnlinePCA

OnlinePCA: write_csv
Distributions
DelimitedFiles
SparseArrays
MatrixMarket

# CSV

tmp = mktempdir()

data Int64.(ceil.(rand(NegativeBinomial(1l, 0.5), 300
datal[1:50, 1:33] .= 100*data[1:50, 1:33]

data[51:100, 34:66] 100*data[51:100, 34:66]
data[101:150, 67:99] 100*datal[101:150, 67:99]
write_csv(joinpath(tmp, "Data.csv"), data)

# Binarization (Zstandard)

» 99)))
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csv2bin(csvfile=joinpath(tmp, "Data.csv"),
binfile=joinpath(tmp, "Data.zst"))

# Matrix Market (MM)
mmwrite(joinpath(tmp, "Data.mtx"), sparse(data))

# Binarization (Zstandard)
csv2bin(csvfile=joinpath(tmp, "Data.csv"),
binfile=joinpath(tmp, "Data.zst"))

# Summary of data for CSV/Dense Matrix
dense_path = mktempdir()
sumr(binfile=joinpath(tmp, "Data.zst"), outdir=dense_path)

PCA using Halko’s method on CSV input

This example performs PCA using Halko's randomized SVD method on dense CSV input.
Results are visualized using the subplots function defined in the README (https://github.
com/rikenbit/OnlinePCA.jlI?tab=readme-ov-file#setting-for-plot).

out_halko = halko(input=joinpath(tmp, "Data.zst"), dim=3,
scale="log",
rowmeanlist=joinpath(dense_path, "Feature_LogMeans.csv"))

subplots(out_halko[1], group)
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Figure 2: Output of halko against CSV format.

Preprocessing sparse data in Matrix Market format

The following code converts a sparse matrix in MM format into a binary compressed format
and computes summary statistics for PCA.
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# Sparsification + Binarization (Zstandard + MM format)
mm2bin(mmfile=joinpath(tmp, "Data.mtx"),
binfile=joinpath(tmp, "Data.mtx.zst"))

sparse_path = mktempdir()
sumr(binfile=joinpath(tmp, "Data.mtx.zst"),
outdir=sparse_path, mode="sparse_mm")

PCA using sparse_rsvd on Matrix Market input

This example performs PCA using the sparse_rsvd method, designed for sparse input data in
MM format. The top 3 components are visualized.

out_sparse_rsvd = sparse_rsvd(
input=joinpath(tmp, "Data.mtx.zst"),
scale="ftt",
rowmeanlist=joinpath(sparse_path, "Feature_FTTMeans.csv"),
dim=3, chunksize=100)

subplots(out_sparse_rsvd[1], group)
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Figure 3: Output of sparse_rsvd against MM format.

Preparing another sparse matrix for exact_ooc_pca

This example generates a BinCOO format data to simulate “tall and thin” matrix and compresses
it by bincoo2bin for use with exact_ooc_pca.

# Binary C00 (BinC00)
tmp2 = mktempdir()
data2 = Int64.(ceil.(rand(Binomial(1l, 0.2), 99, 33)))
data2[1:33, 1:11] .= 1

data2[34:66, 12:22]
data2[67:99, 23:33]

bincoofile = joinpath(tmp2, "Data2.bincoo")
open(bincoofile, "w") do io
for 1 in 1l:size(data2, 1)
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for j in l:size(data2, 2)
if data2[i, jl !=0
println(io, "$1 $j")
end
end
end
end

# Binarziation (BinC00 + Zstandard)
bincoo2bin(bincoofile=bincoofile, binfile=joinpath(tmp2, "Data2.bincoo.zst"))

PCA using exact_ooc_pca on BinCOO input

Here, we apply exact_ooc_pca, which computes the full covariance matrix in a OOC manner
and performs eigendecomposition.

# Sparse-mode (BinC00)

out_exact_ooc_pca_sparse_bincoo = exact_ooc_pca(
input=joinpath(tmp2, "Data2.bincoo.zst"),
scale="raw", dim=3, chunksize=10, mode="sparse_bincoo")

subplots(out_exact_ooc_pca_sparse_bincoo[3], group)
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Figure 4: Output of exact_ooc_pca against BinCOO format.

For more details, see the README.md of OnlinePCA.jl at https://github.com/rikenbit/
OnlinePCA jl.

Related work

There are various implementations of PCA and some of them are OOC-type or sparse-type (Li,
2023; Moreno, 2022; Pedregosa, 2011) but OnlinePCA. j1 is the only tool that supports both
OOC computation and sparse data formats (e.g., 10X-HDF5, MM, BinCOO).
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Function Name Language 00cC Sparse Format
prcomp/princomp R No -
sklearn.decomposition.PCA  Python No -
MultivariateStats.PCA Julia No -
00CRPCA: :00cPCA_CSV R Yes -
sklearn.decomposition.Increm&ytabhCA Yes -
dask_ml.decomposition.PCA  Python Yes -
PCAone R/C++ Yes -
irlba::prcomp_irlba R No dgCMatrix
sklearn.decomposition.Truncatydboh No scipy.sparse
tenxpca Julia Yes 10X-HDF5
sparse_rsvd Julia Yes MM
exact_ooc_pca Julia Yes CSV/MM/BinCOO

For a more comprehensive comparison, see the Figure 2 in Tsuyuzaki (2020).
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