The Journal of Open Source Software

DOI: 10.21105/joss.09344

Software
= Review @
= Repository &0
= Archive &0

Editor: Fabian Scheipl &
Reviewers:
= Qrafaelbailo

= @pierre-borie

Submitted: 03 October 2025
Published: 15 February 2026

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

RegularizedOptimization.jl: A Julia framework for
regularized and nonsmooth optimization

19, Geoffroy
4, Dominique

19, Mohamed Laghdaf Habiboullah

3. Alberto De Marchi
1

Maxence Gollier
Leconte © 2, Robert Baraldi
Orban ®!, and Youssef Diouane

1 GERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montréal, QC,
Canada 2 Hexaly, France 3 Sandia National Laboratories, USA 4 University of the Bundeswehr Munich,
Germany 9§ Corresponding author

Summary

RegularizedOptimization.jl is a Julia package that implements families of quadratic
regularization and trust-region methods for solving the nonsmooth optimization problem
miniﬁﬂze f(z) + h(xz) subjectto ¢(x) =0, (1)
zeR™
where f : R” — R and ¢ : R™ — R™ are continuously differentiable, and h : R™ — RU{+o0}
is lower semi-continuous. The nonsmooth objective h can be a regularizer, such as a sparsity-
inducing penalty, model simple constraints, such as x belonging to a simple convex set, or
can be a combination of both. All f, h, and ¢ can be nonconvex. RegularizedOptimization jl
provides a modular and extensible framework for solving (1), and developing novel solvers.
Currently, the following solvers are implemented:

= Trust-region solvers TR and TRDH (Aravkin et al., 2022; Leconte & Orban, 2025)

» Quadratic regularization solvers R2, R2DH and R2N (Aravkin et al., 2022; Diouane,
Habiboullah, et al., 2024)

= Levenberg-Marquardt solvers LM and LMTR (Aravkin et al., 2024) used when fis a
least-squares residual.

= Augmented Lagrangian solver AL (De Marchi et al., 2023).

All solvers rely on first derivatives of f and ¢, and optionally on their second derivatives in
the form of Hessian-vector products. If second derivatives are not available, quasi-Newton
approximations can be used. In addition, the proximal mapping of the nonsmooth part h, or
adequate models thereof, must be evaluated. At each iteration, a step is computed by solving
a subproblem of the form (1) inexactly, in which f, h, and c are replaced with appropriate
models around the current iterate. The solvers R2, R2DH, and TRDH are particularly well
suited to solve the subproblems, though they are general enough to solve (1). All solvers
are allocation-free, so re-solves incur no additional allocations. To illustrate our claim of
extensibility, a first version of the AL solver was implemented by an external contributor.
Furthermore, a nonsmooth penalty approach, described in Diouane, Gollier, et al. (2024), is
currently being developed, that relies on the library to efficiently solve the subproblems.

Statement of need

Model-based framework for nonsmooth methods

In Julia, (1) can be solved using ProximalAlgorithms.jl, which implements splitting schemes
and line-search—based methods (Stella et al., 2017; Themelis et al., 2018). Among others, the

Gollier et al. (2026). RegularizedOptimization.jl: A Julia framework for regularized and nonsmooth optimization. Journal of Open Source Software, 1
11(118), 9344. https://doi.org/10.21105/joss.09344.

https://orcid.org/0009-0008-3158-7912
https://orcid.org/0009-0005-3631-2799
https://orcid.org/0000-0002-1825-1639
https://orcid.org/0000-0003-3699-6770
https://orcid.org/0000-0002-3545-6898
https://orcid.org/0000-0002-8017-7687
https://orcid.org/0000-0002-6609-7330
https://doi.org/10.21105/joss.09344
https://github.com/openjournals/joss-reviews/issues/9344
https://github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl/
https://doi.org/10.5281/zenodo.18486418
https://orcid.org/0000-0001-8172-3603
https://github.com/rafaelbailo
https://github.com/pierre-borie
https://creativecommons.org/licenses/by/4.0/
https://github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl
https://github.com/JuliaFirstOrder/ProximalAlgorithms.jl
https://doi.org/10.21105/joss.09344

The Journal of Open Source Software

PANOC (Stella et al., 2017) solver takes a step along a direction d, which depends on the
L-BFGS quasi-Newton approximation of f, followed by proximal steps on h.

By contrast, RegularizedOptimization.jl focuses on model-based trust-region and quadratic
regularization methods, which typically require fewer evaluations of f and its gradient than
first-order line search methods, at the expense of more evaluations of proximal operators
(Aravkin et al., 2022). However, each proximal computation is inexpensive for numerous
commonly used choices of h, such as separable penalties and bound constraints, so that the
overall approach is efficient for large-scale problems.

RegularizedOptimization.jl provides an API to formulate optimization problems and apply
different solvers. It integrates seamlessly with the JuliaSmoothOptimizers (Migot et al., 2021)
ecosystem.

The smooth objective f can be defined via NLPModels.jl (Orban et al., 2020), which provides
a standardized Julia API for representing nonlinear programming (NLP) problems. The
nonsmooth term h can be modeled using ProximalOperators.jl.

Given f and h, the companion package RegularizedProblems.jl provides a way to pair them
into a Regularized Nonlinear Programming Model

reg_nlp = RegularizedNLPModel(f, h)

They can also be paired into a Regularized Nonlinear Least-Squares Model, used by the LM

and LMTR solvers, if f(z) = 3| F(z)|? for some residual F': R® — R™.

reg_nls = RegularizedNLSModel(F, h)

RegularizedProblems.jl also provides a set of instances commonly used in data science and in
nonsmooth optimization, where several choices of f can be paired with various regularizers.
This design makes for a convenient source of problem instances for benchmarking the solvers
in RegularizedOptimization.jl.

Support for both exact and approximate Hessian

In contrast to ProximalAlgorithms.jl, RegularizedOptimization.jl methods such as R2N and
TR support exact Hessians as well as several Hessian approximations of f. Hessian—vector
products v = Hwv can be obtained via automatic differentiation through ADNLPModels.jl or
implemented manually. Limited-memory and diagonal quasi-Newton approximations can be
selected from LinearOperators.jl. This design allows solvers to exploit second-order information
without explicitly forming dense or sparse Hessians, which is often expensive in time and
memory, particularly at large scale.

Example
We illustrate the capabilities of RegularizedOptimization.jl on a Support Vector Machine (SVM)
model with a Zig penalty for image classification (Aravkin et al., 2024).

Below is a condensed example showing how to define the problem and perform a solve followed
by a re-solve:

using LinearAlgebra, Random, ProximalOperators
using NLPModels, RegularizedProblems, RegularizedOptimization
using MLDatasets

Random.seed! (1234)

model, nls_model, _ = RegularizedProblems.svm_train_model() # Build SVM model
f = LSR1Model(model) # L-SR1 Hessian approximation
A=1.0 # Regularization parameter

Gollier et al. (2026). RegularizedOptimization.jl: A Julia framework for regularized and nonsmooth optimization. Journal of Open Source Software, 2
11(118), 9344. https://doi.org/10.21105/joss.09344.

https://github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl
https://github.com/JuliaSmoothOptimizers
https://github.com/JuliaSmoothOptimizers/NLPModels.jl
https://github.com/JuliaSmoothOptimizers/ProximalOperators.jl
https://github.com/JuliaSmoothOptimizers/RegularizedProblems.jl
https://www.github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl
https://github.com/JuliaFirstOrder/ProximalAlgorithms.jl
https://github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl
https://github.com/JuliaSmoothOptimizers/ADNLPModels.jl
https://github.com/JuliaSmoothOptimizers/LinearOperators.jl
https://github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl
https://doi.org/10.21105/joss.09344

The Journal of Open Source Software

h = RootNormLhalf(2)

reg_nlp = RegularizedNLPModel(f, h)

solver = R2NSolver(reg_nlp)

stats = RegularizedExecutionStats(reg_nlp)

solve!(solver, reg_nlp, stats; atol=le-4, rtol=le-4, verbose=1, sub_kwargs=(max_iter=200,))
solve!(solver, reg_nlp, stats; atol=le-5, rtol=le-5, verbose=1, sub_kwargs=(max_iter=200,))

Numerical results

We compare TR, R2N, LM, and LMTR from our library on the SVM problem. Experiments
were performed on macOS (arm64) on an Apple M2 (8-core) machine, using Julia 1.11.7.

The table reports the convergence status of each solver, the number of evaluations of f,
the number of evaluations of V f, the number of proximal operator evaluations, the elapsed
time, and the final objective value. For TR and R2N, we use limited-memory SR1 Hessian
approximations. The subproblem solver is R2.

Method Status t(s) #f #Vf +prox Objective
TR first_order 3.9349 347 291 4037 179.837
R2N first_order 1.9511 185 101 27932 192.493
LM first_order 19.7826 6 2876 1001 201.186
LMTR first_order 12.4967 11 1614 432 188.274

For the LM and LMTR solvers, #V f counts the number of Jacobian—vector and adjoint-
Jacobian—vector products.

All methods successfully reduced the optimality measure below the specified tolerance of 1074,
and thus converged to an approximate first-order stationary point. Note that the final objective
values differ due to the nonconvexity of the problem.

R2N is the fastest in terms of time and number of gradient evaluations. However, it requires
more proximal evaluations, but these are inexpensive. LMTR and LM require the fewest
function evaluations, but incur many Jacobian—vector products, and are the slowest in terms
of time.

Ongoing research aims to reduce the number of proximal evaluations, for instance by allowing
inexact proximal computations (Allaire et al., 2025).

Acknowledgements

M. L. Habiboullah is supported by an excellence FRQNT grant. Y. Diouane, M. Gollier and D.
Orban are partially supported by an NSERC Discovery Grant.

References

Allaire, N., Digabel, S. L., & Orban, D. (2025). An inexact modified quasi-Newton method
for nonsmooth regularized optimization (Cahier G-2025-73). GERAD. https://doi.org/10.
13140/RG.2.2.32728.97288

Aravkin, A. Y., Baraldi, R., & Orban, D. (2022). A proximal quasi-Newton trust-region
method for nonsmooth regularized optimization. SIAM J. Optim., 32(2), 900-929. https:
//doi.org/10.1137 /21M1409536

Aravkin, A. Y., Baraldi, R., & Orban, D. (2024). A Levenberg—Marquardt method for
nonsmooth regularized least squares. SIAM J. Sci. Comput., 46(4), A2557-A2581.
https://doi.org/10.1137/22M1538971

Gollier et al. (2026). RegularizedOptimization.jl: A Julia framework for regularized and nonsmooth optimization. Journal of Open Source Software, 3
11(118), 9344. https://doi.org/10.21105/joss.09344.

https://doi.org/10.13140/RG.2.2.32728.97288
https://doi.org/10.13140/RG.2.2.32728.97288
https://doi.org/10.1137/21M1409536
https://doi.org/10.1137/21M1409536
https://doi.org/10.1137/22M1538971
https://doi.org/10.21105/joss.09344

SS

The Journal of Open Source Software

De Marchi, A., Jia, X., Kanzow, C., & Mehlitz, P. (2023). Constrained composite optimization
and augmented Lagrangian methods. Math. Program., 201(1), 863-896. https://doi.org/
10.1007/s10107-022-01922-4

Diouane, Y., Gollier, M., & Orban, D. (2024). A nonsmooth exact penalty method for
equality-constrained optimization: Complexity and implementation (Cahier G-2024-65).
GERAD. https://doi.org/10.13140/RG.2.2.16095.47527

Diouane, Y., Habiboullah, M. L., & Orban, D. (2024). A proximal modified quasi-Newton
method for nonsmooth regularized optimization (Cahier G-2024-64). GERAD. https:
//www.gerad.ca/fr/papers/G-2024-64

Leconte, G., & Orban, D. (2025). The indefinite proximal gradient method. Comput. Optim.
Appl., 91(2), 861-903. https://doi.org/10.1007/s10589-024-00604-5

Migot, T., Orban, D., & Siqueira, A. S. (2021). The JuliaSmoothOptimizers ecosystem for
linear and nonlinear optimization. https://doi.org/10.5281/zenodo.2655082

Orban, D., Siqueira, A. S., & contributors. (2020). NLPModels.jl: Data structures for
optimization models. https://doi.org/10.5281/zenodo.2558627

Stella, L., Themelis, A., Sopasakis, P., & Patrinos, P. (2017). A simple and efficient algorithm
for nonlinear model predictive control. 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), 1939-1944. https://doi.org/10.1109/CDC.2017.8263933

Themelis, A., Stella, L., & Patrinos, P. (2018). Forward-backward envelope for the sum of two
nonconvex functions: Further properties and nonmonotone line search algorithms. SIAM J.
Optim., 28(3), 2274-2303. https://doi.org/10.1137/16M1080240

Gollier et al. (2026). RegularizedOptimization.jl: A Julia framework for regularized and nonsmooth optimization. Journal of Open Source Software, 4
11(118), 9344. https://doi.org/10.21105/joss.09344.

https://doi.org/10.1007/s10107-022-01922-4
https://doi.org/10.1007/s10107-022-01922-4
https://doi.org/10.13140/RG.2.2.16095.47527
https://www.gerad.ca/fr/papers/G-2024-64
https://www.gerad.ca/fr/papers/G-2024-64
https://doi.org/10.1007/s10589-024-00604-5
https://doi.org/10.5281/zenodo.2655082
https://doi.org/10.5281/zenodo.2558627
https://doi.org/10.1109/CDC.2017.8263933
https://doi.org/10.1137/16M1080240
https://doi.org/10.21105/joss.09344

	Summary
	Statement of need
	Model-based framework for nonsmooth methods
	Support for both exact and approximate Hessian

	Example
	Numerical results

	Acknowledgements
	References

