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Summary
Ordinary Differential Equations (ODEs) are powerful tools for modelling a wide range of
physical systems. Unlike purely data-driven models, ODEs can be based on the underlying
physics, biology, or chemistry of the system being modelled, making them particularly useful for
predicting the behaviour of a system under conditions that have not been observed. ODEs can
be used to model everything from the motion of planets to the spread of infectious diseases.

diffsol is a Rust crate for solving ordinary differential equations (ODEs) or semi-explicit
differential algebraic equations (DAEs). It can solve equations in the following form:

𝑀𝑑𝑦
𝑑𝑡

= 𝑓(𝑡, 𝑦, 𝑝)

where 𝑦 is the state of the system, 𝑝 are a set of parameters, 𝑡 is time, 𝑓(𝑡, 𝑦, 𝑝) is a function
that describes how the state of the system changes over time, and 𝑀 is an optional and
possibly singular mass matrix. The solution to an ODE is a function 𝑦(𝑡) that satisfies the
ODE and any initial conditions.

The equations (e.g., 𝑓(𝑡, 𝑦, 𝑝)) can be provided by the user either using Rust code or a custom
Domain Specific Language (DSL) called DiffSL. DiffSL uses automatic differentiation using
Enzyme (Moses et al., 2022) to calculate the necessary gradients, and JIT compilation (using
either LLVM (Lattner & Adve, 2004) or Cranelift (Bytecode Alliance, 2025)) to generate
efficient native code at runtime. The DSL is ideal for using diffsol from a higher-level
language like Python or R while still maintaining similar performance to pure rust. Diffsol
currently provides Python bindings through the pydiffsol package, with further language
bindings planned.

ODE solvers require linear algebra containers (e.g., vectors, matrices), operators, and linear
solvers. diffsol allows users to choose both dense and sparse matrices and solvers from the
nalgebra (Dimforge, 2025) or faer (Kazdadi, 2025) crates, and uses a trait-based approach
to allow other linear algebra libraries to be added at a later date.

Statement of need
ODE solvers have a long history in scientific computing, and many libraries currently exist.
Some notable examples include scipy.integrate.odeint (Virtanen et al., 2020) in Python,
ode45 (Shampine & Reichelt, 1997) in MATLAB, and the Sundials suite of solvers (Gardner
et al., 2022) in C. Rust is a systems programming language that is gaining popularity in the
scientific computing community due to its performance, safety, and ease of use. There is
currently no ODE solver library written in Rust that provides the same level of functionality as
these other libraries, and this is the gap that diffsol aims to fill.
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ODE solvers written in lower-level languages like C, Fortran, or Rust offer significant performance
benefits. However, these solvers are often more difficult to wrap and use in higher-level languages
like Python or MATLAB, primarily because users must supply their equations in the language
of the solver. diffsol solves this issue by providing its own custom DiffSL DSL which is JIT
compiled to efficient native code at run-time, meaning that users from a higher-level language
like Python or R can specify their equations using a simple string-based format while still
maintaining performance similar to that of pure Rust. Two other popular ODE solvers that
take advantage of JIT compilation are DifferentialEquations.jl (Rackauckas & Nie, 2017)
in Julia and diffrax (Kidger, 2021) in Python. However, both these packages compile the
entire solver as well as the equations, which is a significant amount of code. diffSol only
compiles the equations, meaning that it has a significantly smaller “time-to-first-plot” for
users. Another popular differential equations solver package utilising a DSL is OpenModelica
(Fritzson et al., 2020). Wrappers to this package in higher-level languages like Python rely on
messaging to a separate OpenModelica server, which can be slow and more complicated to set
up. In contrast, diffsol can be integrated directly into higher-level languages using language
bindings and linking to a single shared library, see for example, the pydiffsol Python bindings
discussed below.

Features
The following solvers are available in diffsol:

1. A variable order Backwards Difference Formulae (BDF) solver, suitable for stiff problems
and singular mass matrices. The basic algorithm is derived in (Byrne & Hindmarsh,
1975), however this particular implementation follows that implemented in the MATLAB
routine ode15s (Shampine & Reichelt, 1997) and the SciPy implementation (Virtanen et
al., 2020), which features the NDF formulas for improved stability.

2. A Singly Diagonally Implicit Runge-Kutta (SDIRK or ESDIRK) solver, suitable for
moderately stiff problems and singular mass matrices. Two different butcher tableau
are provided, TR-BDF2 (Bank et al., 1985; Hosea & Shampine, 1996) and ESDIRK34
(Jørgensen et al., 2018), or users can supply their own.

3. A variable order Explicit Runge-Kutta (ERK) solver, suitable for non-stiff problems. One
butcher tableau is provided, the 4th order TSIT45 (Tsitouras, 2011), or users can supply
their own.

All solvers feature:

• Linear algebra containers and linear solvers from the nalgebra or faer crates, including
both dense and sparse matrix support.

• Adaptive step-size control to given relative and absolute tolerances. Tolerances can be
set separately for the main equations, quadrature of the output function, and sensitivity
analysis.

• Dense output, interpolating to times provided by the user.
• Event handling, stopping when a given condition 𝑔𝑒(𝑡, 𝑦, 𝑝) is met or at a specific time.
• Numerical quadrature of an optional output 𝑔𝑜(𝑡, 𝑦, 𝑝) function over time.
• Forward sensitivity analysis, calculating the gradient of an output function or the solver

states 𝑦 with respect to the parameters 𝑝.
• Adjoint sensitivity analysis, calculating the gradient of cost function 𝐺(𝑝) with respect to

the parameters 𝑝. The cost function can be the integral of a continuous output function
𝑔(𝑡, 𝑦, 𝑝) or a sum of a set of discrete functions 𝑔𝑖(𝑡𝑖, 𝑦, 𝑝) at time points 𝑡𝑖.

Bindings in higher-level languages
pydiffsol provides Python bindings to diffsol using the PyO3 (PyO3 Project and Contributors,
2025) crate. It allows users to define ODEs in Python using the DiffSL DSL, and solve them
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using the Rust diffsol library. pydiffsol aims to provide a simple and easy-to-use interface
for solving ODEs in Python, while still maintaining the performance benifits of using Rust
under the hood.

The goal is to develop further bindings to other higher-level languages, including R, JAX, and
JavaScript, exploiting the DiffSL DSL to provide high performance while maintaining ease of
use and positioning the core diffsol library as a widely used cross-language, cross-platform,
high-performance ODE solver.
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