
diffsol: Rust crate for solving differential equations
Martin Robinson 1¶ and Alex Allmont 1

1 Oxford Research Software Engineering Group, Doctoral Training Centre, University of Oxford, Oxford,
UK ¶ Corresponding author

DOI: 10.21105/joss.09384

Software
• Review
• Repository
• Archive

Editor: Neea Rusch
Reviewers:

• @DiogoRibeiro7
• @Armavica
• @jeertmans

Submitted: 06 November 2025
Published: 24 January 2026

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Ordinary Differential Equations (ODEs) are powerful tools for modelling a wide range of
physical systems. Unlike purely data-driven models, ODEs can be based on the underlying
physics, biology, or chemistry of the system being modelled, making them particularly useful for
predicting the behaviour of a system under conditions that have not been observed. ODEs can
be used to model everything from the motion of planets to the spread of infectious diseases.

diffsol is a Rust crate for solving ordinary differential equations (ODEs) or semi-explicit
differential algebraic equations (DAEs). It can solve equations in the following form:

𝑀𝑑𝑦
𝑑𝑡

= 𝑓(𝑡, 𝑦, 𝑝)

where 𝑦 is the state of the system, 𝑝 are a set of parameters, 𝑡 is time, 𝑓(𝑡, 𝑦, 𝑝) is a function
that describes how the state of the system changes over time, and 𝑀 is an optional and
possibly singular mass matrix. The solution to an ODE is a function 𝑦(𝑡) that satisfies the
ODE and any initial conditions.

The equations (e.g., 𝑓(𝑡, 𝑦, 𝑝)) can be provided by the user either using Rust code or a custom
Domain Specific Language (DSL) called DiffSL. DiffSL uses automatic differentiation using
Enzyme (Moses et al., 2022) to calculate the necessary gradients, and JIT compilation (using
either LLVM (Lattner & Adve, 2004) or Cranelift (Bytecode Alliance, 2025)) to generate
efficient native code at runtime. The DSL is ideal for using diffsol from a higher-level
language like Python or R while still maintaining similar performance to pure rust. Diffsol
currently provides Python bindings through the pydiffsol package, with further language
bindings planned.

ODE solvers require linear algebra containers (e.g., vectors, matrices), operators, and linear
solvers. diffsol allows users to choose both dense and sparse matrices and solvers from the
nalgebra (Dimforge, 2025) or faer (Kazdadi, 2025) crates, and uses a trait-based approach
to allow other linear algebra libraries to be added at a later date.

Statement of need
ODE solvers have a long history in scientific computing, and many libraries currently exist.
Some notable examples include scipy.integrate.odeint (Virtanen et al., 2020) in Python,
ode45 (Shampine & Reichelt, 1997) in MATLAB, and the Sundials suite of solvers (Gardner
et al., 2022) in C. Rust is a systems programming language that is gaining popularity in the
scientific computing community due to its performance, safety, and ease of use. There is
currently no ODE solver library written in Rust that provides the same level of functionality as
these other libraries, and this is the gap that diffsol aims to fill.

Robinson, & Allmont. (2026). diffsol: Rust crate for solving differential equations. Journal of Open Source Software, 11(117), 9384.
https://doi.org/10.21105/joss.09384.

1

https://orcid.org/0000-0002-1572-6782
https://orcid.org/0009-0001-4162-0180
https://ror.org/052gg0110
https://doi.org/10.21105/joss.09384
https://github.com/openjournals/joss-reviews/issues/9384
https://github.com/martinjrobins/diffsol
https://doi.org/10.5281/zenodo.18351539
https://nkrusch.github.io
https://orcid.org/0000-0002-7354-5330
https://github.com/DiogoRibeiro7
https://github.com/Armavica
https://github.com/jeertmans
https://creativecommons.org/licenses/by/4.0/
https://github.com/martinjrobins/diffsol
https://github.com/alexallmont/pydiffsol
https://doi.org/10.21105/joss.09384


ODE solvers written in lower-level languages like C, Fortran, or Rust offer significant performance
benefits. However, these solvers are often more difficult to wrap and use in higher-level languages
like Python or MATLAB, primarily because users must supply their equations in the language
of the solver. diffsol solves this issue by providing its own custom DiffSL DSL which is JIT
compiled to efficient native code at run-time, meaning that users from a higher-level language
like Python or R can specify their equations using a simple string-based format while still
maintaining performance similar to that of pure Rust. Two other popular ODE solvers that
take advantage of JIT compilation are DifferentialEquations.jl (Rackauckas & Nie, 2017)
in Julia and diffrax (Kidger, 2021) in Python. However, both these packages compile the
entire solver as well as the equations, which is a significant amount of code. diffSol only
compiles the equations, meaning that it has a significantly smaller “time-to-first-plot” for
users. Another popular differential equations solver package utilising a DSL is OpenModelica
(Fritzson et al., 2020). Wrappers to this package in higher-level languages like Python rely on
messaging to a separate OpenModelica server, which can be slow and more complicated to set
up. In contrast, diffsol can be integrated directly into higher-level languages using language
bindings and linking to a single shared library, see for example, the pydiffsol Python bindings
discussed below.

Features
The following solvers are available in diffsol:

1. A variable order Backwards Difference Formulae (BDF) solver, suitable for stiff problems
and singular mass matrices. The basic algorithm is derived in (Byrne & Hindmarsh,
1975), however this particular implementation follows that implemented in the MATLAB
routine ode15s (Shampine & Reichelt, 1997) and the SciPy implementation (Virtanen et
al., 2020), which features the NDF formulas for improved stability.

2. A Singly Diagonally Implicit Runge-Kutta (SDIRK or ESDIRK) solver, suitable for
moderately stiff problems and singular mass matrices. Two different butcher tableau
are provided, TR-BDF2 (Bank et al., 1985; Hosea & Shampine, 1996) and ESDIRK34
(Jørgensen et al., 2018), or users can supply their own.

3. A variable order Explicit Runge-Kutta (ERK) solver, suitable for non-stiff problems. One
butcher tableau is provided, the 4th order TSIT45 (Tsitouras, 2011), or users can supply
their own.

All solvers feature:

• Linear algebra containers and linear solvers from the nalgebra or faer crates, including
both dense and sparse matrix support.

• Adaptive step-size control to given relative and absolute tolerances. Tolerances can be
set separately for the main equations, quadrature of the output function, and sensitivity
analysis.

• Dense output, interpolating to times provided by the user.
• Event handling, stopping when a given condition 𝑔𝑒(𝑡, 𝑦, 𝑝) is met or at a specific time.
• Numerical quadrature of an optional output 𝑔𝑜(𝑡, 𝑦, 𝑝) function over time.
• Forward sensitivity analysis, calculating the gradient of an output function or the solver

states 𝑦 with respect to the parameters 𝑝.
• Adjoint sensitivity analysis, calculating the gradient of cost function 𝐺(𝑝) with respect to

the parameters 𝑝. The cost function can be the integral of a continuous output function
𝑔(𝑡, 𝑦, 𝑝) or a sum of a set of discrete functions 𝑔𝑖(𝑡𝑖, 𝑦, 𝑝) at time points 𝑡𝑖.

Bindings in higher-level languages
pydiffsol provides Python bindings to diffsol using the PyO3 (PyO3 Project and Contributors,
2025) crate. It allows users to define ODEs in Python using the DiffSL DSL, and solve them

Robinson, & Allmont. (2026). diffsol: Rust crate for solving differential equations. Journal of Open Source Software, 11(117), 9384.
https://doi.org/10.21105/joss.09384.

2

https://github.com/alexallmont/pydiffsol
https://doi.org/10.21105/joss.09384


using the Rust diffsol library. pydiffsol aims to provide a simple and easy-to-use interface
for solving ODEs in Python, while still maintaining the performance benifits of using Rust
under the hood.

The goal is to develop further bindings to other higher-level languages, including R, JAX, and
JavaScript, exploiting the DiffSL DSL to provide high performance while maintaining ease of
use and positioning the core diffsol library as a widely used cross-language, cross-platform,
high-performance ODE solver.

Acknowledgements
We gratefully acknowledge the support of all the past and future contributors to the diffsol

project, for their advice, enthusiasm, bug reports and code. In particular, we would like to
thank the authors of the pharmsol crate, Julian Otalvaro and Markus Hovd.

References
Bank, R. E., Coughran, W. M., Fichtner, W., Grosse, E. H., Rose, D. J., & Smith, R. K. (1985).

Transient simulation of silicon devices and circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 4(4), 436–451. https://doi.org/10.1109/T-
ED.1985.22232

Byrne, G. D., & Hindmarsh, A. C. (1975). A polyalgorithm for the numerical solution of
ordinary differential equations. ACM Transactions on Mathematical Software (TOMS),
1(1), 71–96. https://doi.org/10.1145/355626.355636

Bytecode Alliance. (2025). Cranelift (Version 0.115.1). https://wasmtime.dev

Dimforge. (2025). Nalgebra (Version 0.33.2). https://github.com/dimforge/nalgebra

Fritzson, P., Pop, A., Abdelhak, K., Ashgar, A., Bachmann, B., Braun, W., Bouskela, D.,
Braun, R., Buffoni, L., Casella, F., Castro, R., Franke, R., Fritzson, D., Gebremedhin,
M., Heuermann, A., Lie, B., Mengist, A., Mikelsons, L., Moudgalya, K., … Östlund,
P. (2020). The OpenModelica integrated environment for modeling, simulation, and
model-based development. Modeling, Identification and Control, 41(4), 241–295. https:
//doi.org/10.4173/mic.2020.4.1

Gardner, D. J., Reynolds, D. R., Woodward, C. S., & Balos, C. J. (2022). Enabling new
flexibility in the SUNDIALS suite of nonlinear and differential/algebraic equation solvers.
ACM Transactions on Mathematical Software (TOMS), 48(3), 1–24. https://doi.org/10.
1145/3539801

Hosea, M., & Shampine, L. (1996). Analysis and implementation of TR-BDF2. Applied
Numerical Mathematics, 20(1-2), 21–37. https://doi.org/10.1016/0168-9274(95)00115-8

Jørgensen, J. B., Kristensen, M. R., & Thomsen, P. G. (2018). A family of ESDIRK integration
methods. arXiv Preprint arXiv:1803.01613. https://doi.org/10.48550/arXiv.1803.01613

Kazdadi, S. E. (2025). Faer-rs (Version 0.1.0). https://faer-rs.github.io

Kidger, P. (2021). On neural differential equations [PhD thesis, University of Oxford]. https:
//doi.org/10.48550/arXiv.2202.02435

Lattner, C., & Adve, V. (2004). LLVM: A compilation framework for lifelong program analysis
& transformation. International Symposium on Code Generation and Optimization, 2004.
CGO 2004., 75–86. https://doi.org/10.1109/CGO.2004.1281665

Moses, W. S., Narayanan, S. H. K., Paehler, L., Churavy, V., Schanen, M., Hückelheim,
J., Doerfert, J., & Hovland, P. (2022). Scalable automatic differentiation of multiple

Robinson, & Allmont. (2026). diffsol: Rust crate for solving differential equations. Journal of Open Source Software, 11(117), 9384.
https://doi.org/10.21105/joss.09384.

3

https://github.com/martinjrobins/diffsol/issues/131
https://doi.org/10.1109/T-ED.1985.22232
https://doi.org/10.1109/T-ED.1985.22232
https://doi.org/10.1145/355626.355636
https://wasmtime.dev
https://github.com/dimforge/nalgebra
https://doi.org/10.4173/mic.2020.4.1
https://doi.org/10.4173/mic.2020.4.1
https://doi.org/10.1145/3539801
https://doi.org/10.1145/3539801
https://doi.org/10.1016/0168-9274(95)00115-8
https://doi.org/10.48550/arXiv.1803.01613
https://faer-rs.github.io
https://doi.org/10.48550/arXiv.2202.02435
https://doi.org/10.48550/arXiv.2202.02435
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.21105/joss.09384


parallel paradigms through compiler augmentation. Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis. https:
//doi.org/10.1109/SC41404.2022.00065

PyO3 Project and Contributors. (2025). PyO3 (Version v0.27.2). https://github.com/PyO3/
pyo3

Rackauckas, C., & Nie, Q. (2017). DifferentialEquations.jl – a performant and feature-rich
ecosystem for solving differential equations in Julia. The Journal of Open Research Software,
5(1). https://doi.org/10.5334/jors.151

Shampine, L. F., & Reichelt, M. W. (1997). The MATLAB ODE suite. SIAM Journal on
Scientific Computing, 18(1), 1–22. https://doi.org/10.1137/s1064827594276424

Tsitouras, C. (2011). Runge–Kutta pairs of order 5 (4) satisfying only the first column
simplifying assumption. Computers & Mathematics with Applications, 62(2), 770–775.
https://doi.org/10.1016/j.camwa.2011.06.002

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., & others. (2020). SciPy 1.0:
Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3),
261–272. https://doi.org/10.1038/s41592-019-0686-2

Robinson, & Allmont. (2026). diffsol: Rust crate for solving differential equations. Journal of Open Source Software, 11(117), 9384.
https://doi.org/10.21105/joss.09384.

4

https://doi.org/10.1109/SC41404.2022.00065
https://doi.org/10.1109/SC41404.2022.00065
https://github.com/PyO3/pyo3
https://github.com/PyO3/pyo3
https://doi.org/10.5334/jors.151
https://doi.org/10.1137/s1064827594276424
https://doi.org/10.1016/j.camwa.2011.06.002
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.09384

	Summary
	Statement of need
	Features
	Bindings in higher-level languages
	Acknowledgements
	References

