SS

The Journal of Open Source Software

DOI: 10.21105/joss.09386

Software
= Review &7
= Repository @
= Archive &7

Editor: Richard Littauer 7
Reviewers:
= Qariostas

= @joeybernard

Submitted: 17 October 2025
Published: 03 February 2026

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Ellip: An Elliptic Integral Library for Rust

Sira Pornsiriprasert © 129

1 Faculty of Medicine Ramathibodi Hospital, Mahidol University, ThailandROR 2 Center for Biomedical
and Robotics Technology (BART LAB), Department of Biomedical Engineering, Faculty of Engineering,
Mabhidol University, ThailandROR € Corresponding author

Summary

Ellip is an elliptic integral library implemented in Rust. Legendre's, Carlson's, and Bulirsch's
forms are provided as generic-typed functions, compatible with no-std environments. The
library is extensively tested for accuracy against Wolfram Engine with errors within a few
machine epsilons. Ellip contributes to the Rust scientific ecosystem by providing fundamental
mathematical functions applicable across mathematics, physics, and engineering.

(a)

(w'd)3

©

cel(kc,p,1,1)

Z(p,m)

® ke

Figure 1: Examples of Elliptic Integral Functions Computed with Ellip and Visualized Using Plotly (Plotly
Inc., 2025). (a) Legendre's Incomplete Elliptic of the Second Kind (b) Carlson’s Degenerate Elliptic
Integral of the Third Kind (c) Jacobi Zeta (d) Bulirsch's General Complete Elliptic Integral

Statement of Need

Elliptic integrals are special functions that arise in many areas of mathematics, physics, and
engineering. Notably, they are used for computing the lengths of plane curves (Carlson, 2025),
calculating magnetic fields (Derby & Olbert, 2010), modeling interactions in string theory
(Blimlein et al., 2019), solving nonlinear mechanics (Anakhaev, 2020), and describing two-body
scattering dynamics in the field of astrophysics (Bern et al., 2022).

Rust is a relatively young programming language. It features high-level memory safety without

Pornsiriprasert. (2026). Ellip: An Elliptic Integral Library for Rust. Journal of Open Source Software, 11(118), 9386. https://doi.org/10.21105/joss. 1

09386.

https://orcid.org/0000-0002-5636-8870
https://ror.org/04884sy85
https://ror.org/01znkr924
https://doi.org/10.21105/joss.09386
https://github.com/openjournals/joss-reviews/issues/9386
https://github.com/p-sira/ellip
https://doi.org/10.5281/zenodo.17990805
https://burntfen.com
https://orcid.org/0000-0001-5428-7535
https://github.com/ariostas
https://github.com/joeybernard
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.09386
https://doi.org/10.21105/joss.09386

The Journal of Open Source Software

compromising performance (Jung et al., 2017), making it particularly suited for embedded
scientific computing, where elliptic integrals are increasingly needed. While several programming
languages have mature libraries for elliptic integrals, such as SciPy in Python (Virtanen et
al., 2020), Boost.Math in C++ (Maddock et al., 2025), and the GNU Scientific Library in C
(Galassi, 2009), the Rust ecosystem has lacked a comprehensive, well-tested implementation.
Although the Russell Lab (Pedroso, 2025) in Rust includes Legendre's elliptic integrals, it lacks
the commonly used Carlson's symmetric forms.

The Ellip library provides a suite of elliptic integral forms: Legendre's and Carlson's forms. The
implementations of the two modules were derived from Boost.Math (Maddock et al., 2025).
However, ellip adopts the elliptic parameter m instead of the modulus k, where m = k2.
This choice extends the domain of validity as m remains real when k is purely imaginary.
An example application is the computation of the magnetic field of a cylinder magnet with
arbitrary uniform magnetization (Caciagli et al., 2018).

Additionally, the library covers Bulirsch's forms, which are often not included in standard
mathematical libraries, and miscellaneous functions, such as Heuman lambda and Jacobi zeta.
All functions are extensively documented and tested, with parallelization available through the
companion library Ellip-Rayon and Python support via EllipPy (Pornsiriprasert, 2025).

Software Implementation

An elliptic integral is an integral of rational function R of ¢ and the square root of polynomial
P(t):

/ R(t,/P(t))dt,

where Pis a cubic or quartic polynomial in ¢ (Byrd et al., 1971).

Ellip consists of four modules: legendre, bulirsch, carlson, and misc. The functions are
implemented exclusively in Rust, accept generic real numbers provided by num-traits's float
(Stone, 2024), and operate entirely on the stack. The functions are outlined in Tables 1, 2, 3,
and 4, respectively.

Performance is optimized by deferring input validation, i.e., assuming inputs are valid and
raising errors upon completing the routine. Ellip-Rayon was released as a companion library
for parallelizing large inputs. Python is supported via the EllipPy library, using PyO3 (PyO3
Project and Contributors, 2025) for Rust-Python binding. The documentation covers all public
functions, encompassing their mathematical definitions, domains, graphical representations,
special cases, and related functions.

Table 1: Legendre's Elliptic Integral Functions of the Module legendre

Function Definition (Carlson, 2025)
Legendre’s Complete Elliptic Integrals

. _ [7/2 do
ellipk K(m) = fo —

ellipe E(m) = f;/Q V1 —msin? 0df

L /2 de
elllppl H(n,m) - fO (1—n sin? §)V1—msin? 6
ellipd D(m) = Klml-Btm)

Pornsiriprasert. (2026). Ellip: An Elliptic Integral Library for Rust. Journal of Open Source Software, 11(118), 9386. https://doi.org/10.21105/joss. 2

09386.

https://doi.org/10.21105/joss.09386
https://doi.org/10.21105/joss.09386

The Journal of Open Source Software

Function Definition (Carlson, 2025)

Legendre’s Incomplete Elliptic Integrals

ellipf f % e
ellipeinc E(¢,m) = f0¢ V1 —msin®0de

L ¢ dé
elllppllnc ¢’n m f (1—nsin 9\/1 msin? 0
ellippiinc_bulirsch Same as II(¢,n, m)

- _ F(¢m)—E(¢,m)
ellipdinc D(¢,m) = —=———2—

Computation using lookup tables (Abramowitz & Stegun, 2013) and relations to Carlson’s
symmetric integrals (Carlson, 2025).

Table 2: Bulirsch's Elliptic Integral Functions of the Module bulirsch

Function Definition (Bulirsch, 1969)
_ 7™/2 acos®6+bsin? 6 do
cel Cel(kcv b, a, b) - fo (cos? O+psin? 0) /cos? 0+k2 sin? 6
2 do
Cel]. Cel.l k‘ 7‘-/ T oa 15 .24
() fO cos2 0+k2 sin” @
cel2 cel2(k,,a,b) = fﬁ/z ath tan” 0 -~
(1+k2 tan” 6) \/11tan2 0
tan x dé
ell ell(z, k) = [—L—
(@ke) =[5 Jarrimas
arctanx g4p tan2 0 do
el2 el2(z,k,,a,b) = fO (1+k2 tan® 6) \/1tan2 @
tan do
el3 el3(z, k = [*
(s Ve p) f() (COSQ 6+psin? 9) \/0032 0+k2 sin? 0

Based on the original implementations by Bulirsch (1969).

Table 3: Carlson's Symmetric Elliptic Integral Functions of the Module carlson

Function Definition (Carlson, 2025)
elliprf Ri(®,9,2) =3 [J Tomitois
. 1 oo tlagstalytes) dt
elliprg Rg(z,y,2) = 3 fo (t+z) (t+y) (t+2)
. — 3 [dt
elliprj Ry(z,y,2,p) = 3 fo (t+p)/(t+) (t+y) (t+2)
elliprc Re(z,y) = %fooo (t+y()l\t/t+z
elliprd Rp(z,y,2) = 5 f (t+2) t+x)(t+y)(t+Z)

Computation using Carlson’s duplication theorem (Carlson, 2025).

Pornsiriprasert. (2026). Ellip: An Elliptic Integral Library for Rust. Journal of Open Source Software, 11(118), 9386. https://doi.org/10.21105/joss. 3
09386.

https://doi.org/10.21105/joss.09386
https://doi.org/10.21105/joss.09386

The Journal of Open Source Software

The compilation of Ellip is controlled by feature flags. The no-std flag enables Ellip to compile
in no-std environments. The unstable flag exposes internal functions for advanced users,
bypassing input validations at the cost of safety guarantees. Lastly, the test_force_fail
is used for code coverage, where some conditions are unreachable as remnants of defensive
programming.

Table 4. Miscellaneous Functions Related to Elliptic Integrals of the Module misc

Function Definition (Bulirsch, 1969; Reinhardt & Walker, 2025)
jacobi_zeta Z(¢p,m) =E(¢p,m) — W
heuman_lambda Ao(p,m) = % + 2K(m) Z(¢,1—m)

Computation using relations to Carlson's symmetric integrals.

Results

The library has been extensively tested against Wolfram Engine across the supported domains.
The results were reported as symmetric relative errors (§) in units of machine epsilon, as
defined by

otherwise,

0, if la—0b| <e,
d(a,b) = la — b

max(|al, [b])’

where € = 2.2204460492503131 % 10716,

Test data generation scripts are provided for reproducibility. The error report is automatically
generated via continuous integration. The following results were generated on AMD Ryzen 5
4600H with Radeon Graphics ©@3.0 GHz running x86_64-unknown-linux-gnu rustc 1.90.0 using
ellip v0.5.9 at 64-bit precision.

Table 5: Summary of Function Accuracy at 64-bit Precision.

Function Median (¢) Max () Variance (2)
Module legendre

ellipk 0.00 108.14 8.39
ellipe 0.00 3.00 0.19
ellippi 0.00 36.35 0.86
ellipd 0.00 2.64 0.27
ellipf 0.00 7.47 0.36
ellipeinc 0.00 24.66 1.87
ellippiinc 0.00 395.31 180.66
ellippiinc_bulirsch 0.00 395.31 180.05
ellipdinc 0.00 8.38 0.46
Module bulirsch

cel 0.62 36.94 7.88
cell 0.00 8.68 1.56
cel2 0.00 3.47 0.51
ell 0.00 1.70 0.08
el2 0.00 74.60 16.74
el3 0.00 53.21 17.51

Pornsiriprasert. (2026). Ellip: An Elliptic Integral Library for Rust. Journal of Open Source Software, 11(118), 9386. https://doi.org/10.21105/joss. 4

09386.

https://doi.org/10.21105/joss.09386
https://doi.org/10.21105/joss.09386

The Journal of Open Source Software

Function Median (¢) Max (¢) Variance (£2)
Module carlson

elliprf 0.00 1.57 0.19

elliprg 0.00 5.25 0.38

elliprj 0.56 136.97 13.93

elliprc 0.00 2.82 0.14

elliprd 0.00 6.25 0.40

Module misc

jacobi_zeta 0.00 8.66 0.34
heuman_lambda 0.00 2.86 0.24

Machine epsilon (g) = 2.2204460492503131 10~1¢

Numerical errors are typically below one machine epsilon, and generally within tens to hundreds
of machine epsilon. Since the functions are convergent, such errors can be mitigated upon the
availability of a 128-bit float type in the Rust stable build.

Usage Example

The following example shows a function for calculating the perimeter of an ellipse using the
formula derived from Chandrupatla & Osler (2010). With m = 1 — b?/a?, the formula can
be expressed using Legendre’s elliptic integral of the second kind E or Carlson's symmetric
integrals Rq:

P(a,b) = 4aE(m) = 8aR (0, a?,b?).

Example 1: Ellipse Perimeter Calculation.
use ellip::*;
fn ellipse_perimeter(a: f64, b: f64) -> Result<f64, StrErr> {

Ok(8.0 * elliprg(0.0, a * a, b * b)?)
}

// Example: ellipse with semi-major axis 5, semi-minor axis 3
printtn!("{}", ellipse_perimeter(5.0, 3.0).unwrap()); // 25.526998863398124

Acknowledgment

| thank the SciPy, Cephes Math Library, Boost Math Library, and Russell Lab contributors
for their design inspirations, technical references, and commitment to making mathematical
libraries freely available to all.

References

Abramowitz, M., & Stegun, I. A. (2013). Handbook of mathematical functions: With formulas,
graphs, and mathematical tables (9. Dover print.; [Nachdr. der Ausg. von 1972]). Dover
Publ. ISBN: 978-0-486-61272-0

Anakhaev, K. N. (2020). Elliptic integrals in nonlinear problems of mechanics. Doklady Physics,
65(4), 142-146. https://doi.org/10.1134/51028335820040011

Pornsiriprasert. (2026). Ellip: An Elliptic Integral Library for Rust. Journal of Open Source Software, 11(118), 9386. https://doi.org/10.21105/joss. 5
09386

https://personal.math.ubc.ca/~cbm/aands/frameindex.htm
https://personal.math.ubc.ca/~cbm/aands/frameindex.htm
https://doi.org/10.1134/S1028335820040011
https://doi.org/10.21105/joss.09386
https://doi.org/10.21105/joss.09386

SS

The Journal of Open Source Software

Bern, Z., Parra-Martinez, J., Roiban, R., Ruf, M. S., Shen, C.-H., Solon, M. P., & Zeng,
M. (2022). Scattering amplitudes, the tail effect, and conservative binary dynamics at
O(G™4). Physical Review Letters, 128(16), 161103. https://doi.org/10.1103/PhysRevLett.
128.161103

Bliimlein, J., Schneider, C., & Paule, P. (2019). Elliptic integrals, elliptic functions and modular
forms in quantum field theory. Springer International Publishing. https://doi.org/10.1007/
978-3-030-04480-0

Bulirsch, R. (1969). Numerical calculation of elliptic integrals and elliptic functions. IlI.
Numerische Mathematik, 13(4), 305-315. https://doi.org/10.1007/BF02165405

Byrd, P. F., Friedman, M. D., Byrd, P. F., & Friedman, M. D. (1971). Handbook of Elliptic
Integrals for Engineers and Scientists (2. ed., rev). Springer. ISBN: 978-3-540-05318-7

Caciagli, A., Baars, R. J., Philipse, A. P., & Kuipers, B. W. M. (2018). Exact expression for
the magnetic field of a finite cylinder with arbitrary uniform magnetization. Journal of
Magnetism and Magnetic Materials, 456, 423-432. https://doi.org/10.1016/j.jmmm.2018.
02.003

Carlson, B. C. (2025, March). DLMF: Chapter 19 elliptic integrals. https://dImf.nist.gov/19

Chandrupatla, T. R., & Osler, T. J. (2010). The perimeter of an ellipse. Mathematical
Scientist, 35(2), 122-131. https://research.ebsco.com/linkprocessor/plink?id=194f5a76-
a788-3459-b2f8-05334647e374

Derby, N., & Olbert, S. (2010). Cylindrical magnets and ideal solenoids. American Journal of
Physics, 78(3), 229-235. https://doi.org/10.1119/1.3256157

Galassi, M. (2009). GNU scientific library reference manual: For GSL version 1.12 (3. ed).
Network Theory. ISBN: 978-0-9546120-7-8

Jung, R., Jourdan, J.-H., Krebbers, R., & Dreyer, D. (2017). RustBelt: Securing the
foundations of the Rust programming language. Proc. ACM Program. Lang., 2, 66:1-66:34.
https://doi.org/10.1145 /3158154

Maddock, J., Bristow, P., Holin, H., & Zhang, X. (2025, April). Boost math library - special
functions - elliptic integrals. https://www.boost.org/doc/libs/1_88_0/libs/math/doc/
html/math_toolkit/ellint.html

Pedroso, D. (2025, February). Russell_lab::math - Rust. https://docs.rs/russell_lab/1.10.0/
russell_lab/math/index.html

Plotly Inc. (2025). Plotly.rs (Version 0.12.1). Plotly. https://github.com/plotly/plotly.rs

Pornsiriprasert, S. (2025, October 17). EllipPy documentation — EllipPy 0.5.6. https://p-
sira.github.io/ellippy/

PyO3 Project and Contributors. (2025). PyO3 (Version 0.26.0). https://github.com/PyO03/
pyo3

Reinhardt, W. P., & Walker, P. L. (2025, March). DLMF: Chapter 22 Jacobian elliptic
functions. https://dImf.nist.gov/22

Stone, J. (2024). Num-traits (Version 0.2.19). https://docs.rs/num-traits/0.2.19/num__traits/
index.html

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,
.. van Mulbregt, P. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in
Python. Nature Methods, 17(3), 261-272. https://doi.org/10.1038/s41592-019-0686-2

Pornsiriprasert. (2026). Ellip: An Elliptic Integral Library for Rust. Journal of Open Source Software, 11(118), 9386. https://doi.org/10.21105/joss. 6
09386.

https://doi.org/10.1103/PhysRevLett.128.161103
https://doi.org/10.1103/PhysRevLett.128.161103
https://doi.org/10.1007/978-3-030-04480-0
https://doi.org/10.1007/978-3-030-04480-0
https://doi.org/10.1007/BF02165405
https://doi.org/10.1016/j.jmmm.2018.02.003
https://doi.org/10.1016/j.jmmm.2018.02.003
https://dlmf.nist.gov/19
https://research.ebsco.com/linkprocessor/plink?id=194f5a76-a788-3459-b2f8-05334647e374
https://research.ebsco.com/linkprocessor/plink?id=194f5a76-a788-3459-b2f8-05334647e374
https://doi.org/10.1119/1.3256157
https://doi.org/10.1145/3158154
https://www.boost.org/doc/libs/1_88_0/libs/math/doc/html/math_toolkit/ellint.html
https://www.boost.org/doc/libs/1_88_0/libs/math/doc/html/math_toolkit/ellint.html
https://docs.rs/russell_lab/1.10.0/russell_lab/math/index.html
https://docs.rs/russell_lab/1.10.0/russell_lab/math/index.html
https://github.com/plotly/plotly.rs
https://p-sira.github.io/ellippy/
https://p-sira.github.io/ellippy/
https://github.com/PyO3/pyo3
https://github.com/PyO3/pyo3
https://dlmf.nist.gov/22
https://docs.rs/num-traits/0.2.19/num_traits/index.html
https://docs.rs/num-traits/0.2.19/num_traits/index.html
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.09386
https://doi.org/10.21105/joss.09386

	Summary
	Statement of Need
	Software Implementation
	Results
	Usage Example
	Acknowledgment
	References

