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Summary
Bayesian Neural Networks (BNN) integrate uncertainty quantification in all steps of the training
and prediction process, thereby enabling better-informed decisions (Arbel et al., 2023). Among
the different approaches to implementing BNNs, Variational Inference (VI) (Hoffman et al.,
2013) specifically strikes a balance between the ability to consider a large variety of distributions
while maintaining low enough compute requirements to allow scaling to larger models.

However, setting up and training BNNs is quite complicated, and existing libraries all either
lack flexibility, lack scalability, or tackle Bayesian computation in general, adding even more
complexity and therefore a huge barrier to entry. Moreover, no existing framework directly
supports straightforward BNN model prototyping by offering pre-programmed Bayesian network
layer types, similar to PyTorch’s nn module. This forces any BNNs to be implemented from
scratch, which can be challenging even for non-Bayesian networks.

torch_blue addresses this by providing an interface that is almost identical to the widely
used PyTorch (Ansel et al., 2024) for basic use, providing a low barrier to entry, as well as
an advanced interface designed for exploration and research. Overall, this allows users to set
up models and even custom layers without worrying about the Bayesian intricacies under the
hood.

Statement of need
To represent uncertainty, BNNs do not consider their weights as point values, but random
variables, i.e., distributions. The optimization goal becomes adapting the weight distributions
to minimize their distance to the true distribution. This requires two assumptions. For one, the
distance between distributions needs to be defined, for which the Kullback-Leibler divergence
(Kullback & Leibler, 1951) is typically used. Secondly, optimizing an object as complex as a
distribution is a non-trivial task. To overcome this, VI specifies a parametrized distribution
and optimizes its parameters. Thus, the Kullback-Leibler criterion can be simplified to the
ELBO (Evidence Lower BOund) loss (Jordan et al., 1999):

ELBO = 𝔼𝑊∼𝑞[ log 𝑝(𝑌 |𝑋,𝑊)⏟⏟⏟⏟⏟⏟⏟
Data fitting

−(log 𝑞(𝑊|𝜆) − log 𝑝(𝑊))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Prior matching

] ,

where (𝑋, 𝑌 ) are the training inputs and labels, 𝑊 the network weights, 𝑞 the variational
distribution and 𝜆 its current best fit parameters.

While interest in uncertainty quantification and BNNs has been growing, support for users
with little to no experience in Bayesian statistics is still limited. Probabilistic programming
languages, such as Pyro (Bingham et al., 2019) and Stan (Stan Development Team, 2025),
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are very powerful and versatile, allowing the implementation of many approaches beyond VI.
However, their interfaces are structured around Bayesian concepts – like plate notation – which
will be unfamiliar to many primary machine learning users.

Figure 1: Code example of a three-layer Bayesian MLP with cross-entropy loss in torch_blue. The
highlight colors relate user-facing components to their position in Figure 2.

Figure 2: Design graph of torch_blue. Colored highlights correspond to their practical applications in
the code example (Figure 1).

torch_blue sacrifices this extreme flexibility to allow nearly fully automatic VI with
reparametrization (Bayes by Backprop) (Blundell et al., 2015). The ability to use multiple
independent sampling dimensions is removed, which allows for fully automating a single
sampling dimension in the outermost instance of the new base class VIModule. To control
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the number of samples this module also captures the optional keyword argument samples.
The log likelihoods typically needed for loss calculation are automatically calculated whenever
weights are sampled, aggregated, and returned once again by the outermost VIModule.

Core design and features
torch_blue is designed around two core aims:

1. Ease of use, even for users with little to no experience with Bayesian statistics
2. Flexibility and extensibility as required for research and exploration

While ease of use influences all design decisions, it features most prominently in the PyTorch-
like interface. While currently only the most common layer types provided by PyTorch are
supported, corresponding Bayesian layers follow an analogous naming pattern and accept the
same arguments as their PyTorch version. Additionally, while there are minor differences, the
process of implementing custom layers is also very similar to PyTorch. To illustrate this Figures
1 and 2 show an application example and internal interactions of torch_blue with the colors
connecting the abstract and applied components.

The additional arguments required to modify the Bayesian aspects of the layers are collected
on a common group of keyword arguments called VIkwargs. The default settings use mean
field Gaussian variational inference with a Gaussian prior, allowing beginner users to implement
simple, unoptimized models without worrying about Bayesian settings.

An overview of the currently supported user-facing components is given in Figure 3. While
modular priors and predictive distributions are quite common even for packages with simpler
interfaces, flexible variational distributions are much more challenging and are often restricted
to mean-field Gaussian. This is likely due to the fact that a generic variational distribution
might require any number of different parameters, and the number and shape of weight
matrices can only be determined with knowledge of the specific combination of layer and
variational distribution. This is overcome in torch_blue by having the layer provide the names
and shapes of the required random variables (e.g., mean and bias) and dynamically creating
the associated class attributes during initialization, when the variational distribution is known.
The modules also provide methods to sample from the variational distribution and access its
parameters.
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Figure 3: Overview of the major components of torch_blue and corresponding non-Bayesian components
of PyTorch.

Another challenge is introduced by the prior term of the ELBO loss. It can only be calculated
analytically for a very limited set of priors and variational distributions. However, like the rest
of the ELBO it can be estimated from the log probability of the sampled weights under these
two distributions. Therefore, torch_blue provides the option to return these as part of the
forward pass in the form of a Tensor containing an additional log_probs attribute similar to
gradient tracking. As a result, the only requirement on custom distributions is that there needs
to be a method to differentiably sample from a variational distribution and, for both priors and
variational distributions, a method to compute the log probability of a given sample.

Finally, in the age of large neural networks, scalability and efficiency are always a concern.
While BNNs are not currently scaled to very large models and this is not a primary target
of torch_blue, it is kept in mind wherever possible. A core feature for this purpose is GPU
compatibility, which comes with the challenge of various backends and device types. We
address this by performing all core operations, in particular the layer forward passes, with
the methods from torch.nn.functional. This outsources backend maintenance to a large,
community-supported library.

Another efficiency optimization is the automatic vectorization of the sampling process.
torch_blue adds an additional wrapper around the forward pass, which catches the optional
samples argument, creates the specified number of samples (default: 10), and vectorizes the
forward pass via PyTorchs vmap method.
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