
JSOSolvers.jl: Unconstrained and bound-constrained
optimization solvers
Tangi Migot 1¶, Dominique Monnet 3, Dominique Orban 1, and Abel
Soares Siqueira 2

1 GERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montréal, QC,
Canada. 2 Netherlands eScience Center, Amsterdam, Netherlands 3 Univ Rennes, INSA Rennes, CNRS,
IRMAR - UMR 6625, Rennes, France ¶ Corresponding author

DOI: 10.21105/joss.09467

Software
• Review
• Repository
• Archive

Editor: Neea Rusch
Reviewers:

• @giovannifereoli
• @dourouc05
• @raphaelchenouard

Submitted: 10 November 2025
Published: 14 January 2026

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
JSOSolvers.jl is a collection of Julia (Bezanson et al., 2017) optimization solvers for nonlinear,
potentially nonconvex, continuous optimization problems that are unconstrained or bound-
constrained:

minimize
𝑥∈ℝ𝑛

𝑓(𝑥) subject to ℓ ≤ 𝑥 ≤ 𝑢, (1)

where 𝑓 ∶ ℝ𝑛 → ℝ is a continuously differentiable function, with ℓ ∈ (ℝ ∪ {−∞})𝑛, and
𝑢 ∈ (ℝ ∪ {+∞})𝑛. The algorithms implemented here are iterative methods that aim to
compute a stationary point of (1) using first and, if possible, second-order derivatives.

Our initial motivation for considering (1) and developing JSOSolvers.jl is to solve large-scale
unconstrained and bound-constrained problems such as parameter estimation in inverse prob-
lems, design optimization in engineering, and regularized machine learning models, and use
these solvers to solve subproblems of penalty algorithms, such as Percival.jl (Antunes dos
Santos et al., 2026) or FletcherPenaltySolver.jl (Migot et al., 2025), for constrained non-
linear continuous optimization problems. In many of these problems, explicitly storing Hessian
matrices is either computationally prohibitive or impractical. The solvers in JSOSolvers.jl

adopt a matrix-free approach, where standard optimization methods are implemented without
forming derivative matrices explicitly. This strategy enables the solution of large-scale problems
even when function and gradient evaluations are expensive.

The library includes TRON, a trust-region Newton method for bound-constrained problems
following the classical formulation of Lin & Moré (1999), TRUNK, a factorization-free trust-
region Newton method based on the truncated conjugate gradient method, as described by
Conn et al. (2000), an implementation of L-BFGS, a limited-memory quasi-Newton method
using a line search globalization strategy, and FOMO, a first-order method based on quadratic
regularization designed for unconstrained optimization. FOMO is an extension of a quadratic
regularization method described by Aravkin et al. (2022), and called R2 in JSOSolvers.jl.
Unlike textbook implementations, our solvers introduce several design differences. TRON
operates in a factorization-free mode, while the original Fortran TRON requires an explicitly
formed Hessian. TRUNK departs from the Conn–Gould–Toint formulation by supporting a
non-monotone mode and multiple subproblem solvers (CG, CR, MINRES, etc.) Our L-BFGS
implementation uses a simplified line-search strategy that avoids the standard Wolfe conditions
while maintaining robust convergence in practice.

A nonlinear least-squares problem is a special case of (1), where 𝑓(𝑥) = 1
2‖𝐹(𝑥)‖22 and the

residual 𝐹 ∶ ℝ𝑛 → ℝ𝑚 is continuously differentiable, which appears in many applications,
including inverse problems in imaging, geophysics, and machine learning. While it is possible to
solve the problem using only the objective, knowing 𝐹 independently allows the development

Migot et al. (2026). JSOSolvers.jl: Unconstrained and bound-constrained optimization solvers. Journal of Open Source Software, 11(117), 9467.
https://doi.org/10.21105/joss.09467.

1

https://orcid.org/0000-0001-7729-2513
https://orcid.org/0000-0002-5482-6831
https://orcid.org/0000-0002-8017-7687
https://orcid.org/0000-0003-4451-281X
https://doi.org/10.21105/joss.09467
https://github.com/openjournals/joss-reviews/issues/9467
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl
https://doi.org/10.5281/zenodo.18247251
https://nkrusch.github.io
https://orcid.org/0000-0002-7354-5330
https://github.com/giovannifereoli
https://github.com/dourouc05
https://github.com/raphaelchenouard
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.09467


of more efficient methods. Specialized variants of TRON and TRUNK, called TRON-NLS and
TRUNK-NLS, leverage the structure of residual models to improve performance and scalability.

Key strengths of JSOSolvers.jl are its efficiency and flexibility. The solvers support fully
in-place execution, allowing repeated solves without additional memory allocation, which is
particularly beneficial in high-performance and GPU computing environments where memory
management is critical. The solvers support any floating-point type, including extended and
multi-precision types such as BigFloat, DoubleFloats, and QuadMath. Moreover, TRUNK,
TRUNK-NLS, and FOMO support GPU arrays, broadening the range of hardware where the
package can be effectively deployed, for instance when used together with ExaModels.jl (Shin
et al., 2024). The package documentation and https://jso.dev/tutorials provide examples
illustrating the use of different floating-point systems. Furthermore, the solvers expose in-place
function variants, allowing multiple optimization problems with identical dimensions and data
types to be solved efficiently without reallocations.

JSOSolvers.jl is built upon the JuliaSmoothOptimizers (JSO) tools1. JSO is an academic
organization containing a collection of Julia packages for nonlinear optimization software
development, testing, and benchmarking. It provides tools for building models, accessing
problem repositories, and solving subproblems. Solvers in JSOSolvers.jl take as input an
AbstractNLPModel, JSO’s general model API defined in NLPModels.jl (Orban et al., 2026a),
a flexible data type to evaluate objective and constraints, their derivatives, and to provide any
information that a solver might request from a model. The user can hand-code derivatives,
use automatic differentiation, or use JSO-interfaces to classical mathematical optimization
modeling languages such as AMPL (Fourer et al., 1990), CUTEst (Gould et al., 2015), and
JuMP (Dunning et al., 2017). The solvers heavily rely on iterative linear algebra methods from
Krylov.jl (Montoison & Orban, 2023).

Statement of need
Julia’s JIT compiler is attractive for the design of efficient scientific computing software, and,
in particular, mathematical optimization (Lubin & Dunning, 2015), and has become a natural
choice for developing new solvers.

While several options exist to solve (1) in Julia, many rely on wrappers to solvers implemented
in low-level compiled languages. For example, if (1) is modeled using JuMP (Dunning et al.,
2017), it can be passed to solvers like IPOPT (Wächter & Biegler, 2006) and Artelys Knitro
(Byrd et al., 2006) via Julia’s native C and Fortran interoperability. However, these interfaces
often lack flexibility with respect to data types and numerical precision. In contrast, solvers
written in pure Julia can seamlessly operate with a variety of arithmetic types or even GPU
array types. This capability is increasingly important as extended-precision arithmetic becomes
more accessible through packages such as GNU MPFR, shipped with Julia. Such flexibility
enables high-precision computing when numerical accuracy is paramount.

Several alternatives to JSOSolvers.jl are available within and outside the Julia ecosystem.
Optim.jl (Mogensen & Riseth, 2018) is a general-purpose optimization library in pure Ju-
lia, suitable for small to medium-scale problems, but it lacks in-place execution and GPU
support. NLopt.jl (Johnson, 2007) provides access to a broad collection of optimization
algorithms via a C library but does not support matrix-free methods or extended precision.
AdaptiveRegularization.jl (Dussault et al., 2024) offers a matrix-free, multi-precision solver
for unconstrained problems and is closely aligned with the design philosophy of JSOSolvers.jl.
Ipopt (Wächter & Biegler, 2006), via Ipopt.jl, is a widely used and efficient solver, but
requires explicit derivatives and is limited to CPU execution. GALAHAD (Fowkes & Gould,
2023), a Fortran-based suite for large-scale problems, is accessible through experimental Julia
wrappers, yet lacks native composability. Commercial solvers such as Artelys Knitro (Byrd

1JuliaSmoothOptimizers https://jso.dev/

Migot et al. (2026). JSOSolvers.jl: Unconstrained and bound-constrained optimization solvers. Journal of Open Source Software, 11(117), 9467.
https://doi.org/10.21105/joss.09467.

2

https://jso.dev/tutorials
https://doi.org/10.21105/joss.09467


et al., 2006) provide robust algorithms but remain constrained by licensing and limited Julia
interoperability. Optimization.jl is a wrapper to existing optimization packages.

Benchmarking
JSOSolvers.jl can solve large-scale problems and can be benchmarked easily against other
JSO-compliant solvers using SolverBenchmark.jl (Orban et al., 2026b). Below, we include
performance profiles (Dolan & Moré, 2002) with respect to elapsed time of JSOSolvers.jl
solvers against Ipopt on all the 291 unconstrained problems from the CUTEst collection (Gould
et al., 2015), whose dimensions range from 2 up to 192,627 variables.2 LBFGS uses only
first-order information, while TRON and TRUNK use Hessian-vector products and Ipopt uses
the Hessian as a matrix. Without explaining performance profiles in full detail, the plot shows
that Ipopt is fastest on 42 problems (15%), TRON on 9 (3%), TRUNK on 64 (21%), and
L-BFGS on 176 (60%). Nearly all problems were solved within the 20-minute limit: TRON
solved 272 (93%), Ipopt 270, TRUNK 269, and L-BFGS 267.

Overall, these results are encouraging. Although Ipopt is a mature and highly optimized
solver, TRUNK and L-BFGS achieve comparable problem coverage while being significantly
faster on many instances. This suggests that the algorithms implemented here are competitive
for large-scale problems. We also expect further gains as we continue refining algorithmic
hyperparameters, which is one of the project’s short-term development goals. A complementary
benchmark for bound-constrained problems is available in the package documentation.

Figure 1: Unconstrained solvers on CUTEst with respect to the elapsed time.

Acknowledgements
Dominique Orban is partially supported by an NSERC Discovery Grant.

2Benchmarks were run sequentially on a CPU-only machine. The hardware configuration was an Intel Core
i7-class processor with approximately 16 GB of RAM running Linux. Timings are intended for relative comparison
only.

Migot et al. (2026). JSOSolvers.jl: Unconstrained and bound-constrained optimization solvers. Journal of Open Source Software, 11(117), 9467.
https://doi.org/10.21105/joss.09467.

3

https://doi.org/10.21105/joss.09467


References
Antunes dos Santos, E., Migot, T., Orban, D., Soares Siqueira, A., & contributors. (2026).

Percival.jl: An augmented Lagrangian method (Version 0.7.6). https://doi.org/10.5281/
ZENODO.3969045

Aravkin, A. Y., Baraldi, R., & Orban, D. (2022). A proximal quasi-Newton trust-region method
for nonsmooth regularized optimization. SIAM Journal on Optimization, 32(2), 900–929.
https://doi.org/10.1137/21m1409536

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Byrd, R. H., Nocedal, J., & Waltz, R. A. (2006). KNITRO: An integrated package for
nonlinear optimization. In Large-Scale Nonlinear Optimization (pp. 35–59). Springer.
https://doi.org/10.1007/0-387-30065-1_4

Conn, A. R., Gould, N. I. M., & Toint, P. L. (2000). Trust region methods. SIAM. https:
//doi.org/10.1137/1.9780898719857

Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with perfor-
mance profiles. Mathematical Programming, 91(2), 201–213. https://doi.org/10.1007/
s101070100263

Dunning, I., Huchette, J., & Lubin, M. (2017). JuMP: A modeling language for mathematical
optimization. SIAM Review, 59(2), 295–320. https://doi.org/10.1137/15M1020575

Dussault, J.-P., Goyette, S., Migot, T., Orban, D., & contributors. (2024). AdaptiveRegulariza-
tion.jl: A unified efficient implementation of trust-region type algorithms for unconstrained
optimization. https://doi.org/10.5281/zenodo.10434673

Fourer, R., Gay, D. M., & Kernighan, B. W. (1990). A modeling language for mathematical
programming. Management Science, 36(5), 519–554. https://doi.org/10.1287/mnsc.36.5.
519

Fowkes, J. M., & Gould, N. I. M. (2023). GALAHAD 4.0: An open source library of Fortran
packages with C and Matlab interfaces for continuous optimization. Journal of Open
Source Software, 8(87), 4882. https://doi.org/10.21105/joss.04882

Gould, N. I., Orban, D., & Toint, P. L. (2015). CUTEst: A Constrained and Unconstrained
Testing Environment with safe threads for mathematical optimization. Computational Op-
timization and Applications, 60(3), 545–557. https://doi.org/10.1007/s10589-014-9687-3

Johnson, S. G. (2007). The NLopt nonlinear-optimization package. https://github.com/
stevengj/nlopt.

Lin, C.-J., & Moré, J. J. (1999). Newton’s method for large bound-constrained optimization
problems. SIAM Journal on Optimization, 9(4), 1100–1127. https://doi.org/10.1137/
s1052623498345075

Lubin, M., & Dunning, I. (2015). Computing in operations research using Julia. INFORMS
Journal on Computing, 27 (2), 238–248. https://doi.org/10.1287/ijoc.2014.0623

Migot, T., Orban, D., Soares Siqueira, A., & contributors. (2025). FletcherPenaltySolver.jl:
Fletcher’s penalty method for nonlinear optimization models (Version 0.3.0). https:
//doi.org/10.5281/ZENODO.7153563

Mogensen, P. K., & Riseth, A. N. (2018). Optim: A mathematical optimization package for
Julia. Journal of Open Source Software, 3(24), 615. https://doi.org/10.21105/joss.00615

Montoison, A., & Orban, D. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods.
Journal of Open Source Software, 8(89), 5187. https://doi.org/10.21105/joss.05187

Migot et al. (2026). JSOSolvers.jl: Unconstrained and bound-constrained optimization solvers. Journal of Open Source Software, 11(117), 9467.
https://doi.org/10.21105/joss.09467.

4

https://doi.org/10.5281/ZENODO.3969045
https://doi.org/10.5281/ZENODO.3969045
https://doi.org/10.1137/21m1409536
https://doi.org/10.1137/141000671
https://doi.org/10.1007/0-387-30065-1_4
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1137/15M1020575
https://doi.org/10.5281/zenodo.10434673
https://doi.org/10.1287/mnsc.36.5.519
https://doi.org/10.1287/mnsc.36.5.519
https://doi.org/10.21105/joss.04882
https://doi.org/10.1007/s10589-014-9687-3
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
https://doi.org/10.1137/s1052623498345075
https://doi.org/10.1137/s1052623498345075
https://doi.org/10.1287/ijoc.2014.0623
https://doi.org/10.5281/ZENODO.7153563
https://doi.org/10.5281/ZENODO.7153563
https://doi.org/10.21105/joss.00615
https://doi.org/10.21105/joss.05187
https://doi.org/10.21105/joss.09467


Orban, D., Soares Siqueira, A., & contributors. (2026a). NLPModels.jl: Data structures for
optimization models (Version 0.21.7). https://doi.org/10.5281/ZENODO.2558626

Orban, D., Soares Siqueira, A., & contributors. (2026b). SolverBenchmark.jl: Benchmark
tools for solvers (Version 0.6.4). https://doi.org/10.5281/ZENODO.2581661

Shin, S., Anitescu, M., & Pacaud, F. (2024). Accelerating optimal power flow with GPUs: SIMD
abstraction of nonlinear programs and condensed-space interior-point methods. Electric
Power Systems Research, 236, 110651. https://doi.org/10.1016/j.epsr.2024.110651

Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1), 25–57. https://doi.org/10.1007/s10107-004-0559-y

Migot et al. (2026). JSOSolvers.jl: Unconstrained and bound-constrained optimization solvers. Journal of Open Source Software, 11(117), 9467.
https://doi.org/10.21105/joss.09467.

5

https://doi.org/10.5281/ZENODO.2558626
https://doi.org/10.5281/ZENODO.2581661
https://doi.org/10.1016/j.epsr.2024.110651
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.21105/joss.09467

	Summary
	Statement of need
	Benchmarking

	Acknowledgements
	References

