The Journal of Open Source Software

DOI: 10.21105/joss.09494

Software
= Review &7
= Repository @
= Archive &0

Editor: Frederick Boehm 7
Reviewers:

= @snowformatics

= Qtelatin

Submitted: 25 June 2025
Published: 04 January 2026

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

Blini: lightweight nucleotide sequence search and
dereplication

Amit Lavon ®!

1 University of California, Irvine, CA, United States of America

Summary

Blini is a tool for quick lookup of nucleotide sequences in databases, and for quick dereplication
of sequence collections. It is meant to help cleaning and characterizing large collections of
sequences that would otherwise be too big to search with BLAST (Altschul et al., 1990) or
too demanding for a local machine to process, for example with Sourmash (Brown & Irber,
2016) or with MMseqs (Steinegger & Soéding, 2018). Blini is designed to be fast and have a
small memory footprint, while allowing the user to tweak its resource consumption to improve
matching resolution. Finally, Blini is delivered as a single runnable binary, with no need to
install any additional software.

Statement of need

Metagenomes are collections of genetic material from various organisms, which are often not
initially known. In modern metagenomics, researchers often generate hundreds of thousands of
redundant metagenome-assembled genomes (MAGs) across different samples. In (Pasolli et al.,
2019) for example, over 150,000 MAGs were dereplicated into about 5,000 species-level bins.
Such clustering operations typically require many compute hours, which can grow quadratically
with the size of the input when using classical clustering algorithms.

Characterizing the taxonomic makeup of a sample or a MAG collection involves searching its
contents in large databases in order to find which organism matches each nucleotide sequence.
Assembled sequences can reach lengths of millions of bases, making alignment-based search
methods too cumbersome. Such big queries are often outsourced to powerful cloud-based
services such as BLAST (Altschul et al., 1990) or CZID (Simmonds et al., 2024).

In recent years, k-mer-based algorithms were introduced, which enabled efficient searching
in large datasets on local machines. Mash distance (Ondov et al., 2016) introduced an
alignment-free estimation formula for average nucleotide identity between sequences, making
sequence comparison linear. Sourmash (Brown & Irber, 2016) uses fractional min-hashing in
order to create small representations of large sequences, which allow for efficient searching
and comparison. The LinClust clustering algorithm (Steinegger & Séding, 2018) uses k-mer
matching to reduce the number of pairwise comparisons and achieve linear scaling with the
size of the input.

This work, Blini, combines insights from Mash, Sourmash, and LinClust into a simple tool
that can quickly cluster or look up big collections of sequences using estimated identity or
containment, with tweakable estimation resolution (similar to Sourmash's scale).

Lavon. (2026). Blini: lightweight nucleotide sequence search and dereplication. Journal of Open Source Software, 11(117), 9494. https: 1

//doi.org/10.21105/joss.09494.


https://orcid.org/0000-0003-3928-5907
https://doi.org/10.21105/joss.09494
https://github.com/openjournals/joss-reviews/issues/9494
https://github.com/fluhus/blini
https://doi.org/10.5281/zenodo.17942839
https://fboehm.us
https://orcid.org/0000-0002-1644-5931
https://github.com/snowformatics
https://github.com/telatin
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.09494
https://doi.org/10.21105/joss.09494

The Journal of Open Source Software

Algorithm

Fingerprinting with k-mers

Blini uses constant-length subsequences (k-mers) to create fingerprints for sequences. It uses
the fractional min-hashing technique, similarly to Sourmash (Brown & Irber, 2016). A sliding
window of length k goes over the sequence and hashes each canonical k-mer. This collection
of hashes is often called the sequence’s sketch. The lower 1/s hashes are retained, for an
input scale parameter s. A high s means fewer hashes used in downstream calculations,
trading accuracy for better CPU and RAM performance. Once k-mer hashes are extracted, the
sequence is discarded and only its sketch is used for downstream operations. These sketches
can be saved to files and reused.

Similarity estimation

Blini uses Mash distance (Ondov et al., 2016) to estimate average nucleotide identity (ANI)
between sequences. This formula translates the Jaccard similarity between two k-mer sets
to an estimation of the ANI between the original sequences. For containment matching, the
hashes of the query sequence are compared against their intersection with the hashes of the
reference sequence.

Search

The first step of searching is indexing the reference dataset. After the reference sequences
are fingerprinted, the 25% lowest hashes are used for indexing. The index is a mapping from
hash value to a list of sequence identifiers of the reference sequences that had that hash in
their fingerprints. The number 25% was chosen as a sweet spot between saving memory and
retaining enough information for the search. As an optimization, hashes with a single reference
sequence are kept in a separate 'singletons’ map. Since in practice most of the index elements
are singletons, this helps reduce RAM consumption and garbage collection times.

In the second stage, each query sequence is read and fingerprinted. The hash values are looked
up in the index, and candidate reference sequences are fetched. Then, the query sequence is
compared against each candidate sequence using Mash distance, and matches that pass the
similarity threshold are reported.

Clustering

The clustering (dereplication) procedure follows a similar scheme to LinClust (Steinegger &
Séding, 2018). Sequences are indexed and ordered from the longest to the shortest. Then,
going by that order, each sequence is searched for using the search procedure. Matches that
pass the similarity threshold are joined with the query sequence and are considered a cluster.
These matches are then removed from the search loop’s candidates. This clustering procedure
does not produce inter-cluster distances for hierarchy generation.

Performance evaluation

Search - small

The search function was tested on RefSeq's viral reference (Pruitt et al., 2007). Blini was
compared against Sourmash and MMsegs. 100 viral genomes were randomly selected for the
test. The algorithms were then run on the 100 genomes as queries, and the original database
as reference. Each algorithm was expected to match each genome to its source in the database.
In a second run, random single-nucleotide polymorphisms (SNPs) were introduced to 1% of
the genomes’ bases, and the same test was rerun. For each test, the number of matches with

Lavon. (2026). Blini: lightweight nucleotide sequence search and dereplication. Journal of Open Source Software, 11(117), 9494. https: 2

//doi.org/10.21105/joss.09494.


https://doi.org/10.21105/joss.09494
https://doi.org/10.21105/joss.09494

SS

The Journal of Open Source Software

sequences other than the query's source was also measured. The searches were run against an
index of the reference dataset, created by each tool.

All three tools were able to match all 100 queries with their sources in the database (Figure
1a). The number of non-source matches was 824 and 712 in Blini, 865 and 660 in Sourmash,
and 3143 and 3019 in MMsegs, in the raw and mutated datasets, respectively (Figure 1b).

Run time was measured for searching the 100 sequences sequentially. Blini and MMseqs were
executed once and searched for all the queries in one run, while Sourmash had to be executed
once for each individual query. Each run was repeated five times and the average run time is
reported. Blini completed the run in 0.5 seconds, Sourmash completed the run in 126 seconds,
and MMseqs completed the run in 151 seconds (Figure 1c). The times shown here do not
include reference-preprocessing time.

A B. C.

100 -
3000 - 102-
80 - - :
60 - 2000 - .
101 -
1500 -
40 -
1000 -
0- | ———

Figure 1: Search results for the viral dataset. Each tool was run on 100 randomly chosen viral genomes,
to find them in the original dataset. (A) shows how many of the 100 genomes were correctly mapped to
their source in the database. (B) shows how many additional matches were found in addition to the 100
chosen genomes. (C) shows the search times for the 100 queries together.

N
G
o
o
Average time (s)

Non-source matches

Successful matches (out of 100)
w
o
O

Blini -
MMseqs |
(SNPs)

Blini -
Blini
(SNPs)
Sourmash -|
Sourmash |
(SNPs)
MMseqs -
MMseqs |
(SNPs)
Blini
(SNPs) ~
Sourmash -|
Sourmash _
(SNPs)
MMseqs -
MMseqs _
(SNPs)
Blini
Blini |
(SNPs)
Sourmash -|
Sourmash _
(SNPs)
MMseqs

Search - big

To test the search function on a large dataset, the bacterial contigs from Pasolli et al. (2019)
were used. This 10GB dataset contains 934K contigs from almost 5K bacterial species. Each
of the compared tools was run to create an index of the dataset.

The simulated query dataset consisted of 100K random fragments of length 10K bases, sampled
uniformly from the bacterial contigs. Each fragment was mutated with random SNPs in 0.1%
of its bases. Blini, Sourmash and MMseqgs were run on the query dataset, to search it in the
bacterial reference. Because of the long search times, only Blini was run on the full set of
queries, while the other tools were run on one or ten queries out of the 100K.

MMseqgs took longer than 30 minutes to search for a single query, and was therefore terminated
prematurely. Sourmash was run on one query and on ten queries and took 31 seconds per
query. Blini took 6 seconds for one and ten queries, and 25 seconds for the entire set of 100K
queries (Figure 2). This means a throughput of 5100 queries per second after the 6 seconds of
loading the reference index. Blini matched all 100K queries with their correct source in the
reference, with 2444 additional non-source matches (false positives).

Lavon. (2026). Blini: lightweight nucleotide sequence search and dereplication. Journal of Open Source Software, 11(117), 9494. https: 3

//doi.org/10.21105/joss.09494.


https://doi.org/10.21105/joss.09494
https://doi.org/10.21105/joss.09494

The Journal of Open Source Software

0}
@ 102-
£
=
10]7 ..

Blini

(1 seq)
Blini

(10 segs
Sourmash
(1 seq)
Sourmash
(10 seqs)
MMseqs
(1 seq)

Blini
(100K seqs)

Figure 2: Search times for the bacterial dataset. Each tool was run on randomly chosen 10 kilobase
fragments from a 10GB bacterial dataset. MMseqs is marked with an X because it was stopped manually
before it could finish running.

Clustering

The clustering function was tested on two simulated datasets created from the 100 chosen
genomes of the previous test. In one dataset, each sequence had multiple counterparts with
random SNPs. In the second dataset, random fragments were extracted from each root
sequence. In the SNPs dataset, each of the 100 original sequences had another 100 mutated
counterparts. Each counterpart had random SNPs in 1% of its bases. In the fragments dataset,
each of the 100 original sequences had 300 random fragments extracted from it, of length
at least 1000 bases. The algorithms were expected to group each sequence with its mutated
counterparts or with its fragments. Performance was evaluated using the Adjusted Rand Index
(ARI). Blini's scale refers to the fraction of k-mers considered for the operation. Scale 100
means that 1/100 of k-mers were used.

In the SNPs dataset, both Blini and MMseqs achieved an ARI between 0.999 and 1.0, except
for Blini with scale 200, which achieved an ARI of 0.997 (Figure 3b). Blini created 100, 100,
101 and 110 clusters using scales 25, 50, 100 and 200 respectively. MMseqgs created 103
clusters (Figure 3a). Blini took on average 10.5 seconds, and MMseqgs took 46 seconds with
one thread, and 14 seconds with four threads (Figure 3b). In terms of memory, Blini had
a maximal memory footprint of 255, 129, 65, and 38 MB using scales 25, 50, 100 and 200
respectively. MMseqs had a maximal memory footprint of 3072 MB (Figure 3c).

Lavon. (2026). Blini: lightweight nucleotide sequence search and dereplication. Journal of Open Source Software, 11(117), 9494. https: 4

//doi.org/10.21105 /joss.09494.


https://doi.org/10.21105/joss.09494
https://doi.org/10.21105/joss.09494

The Journal of Open Source Software

100 - « 1.000 -
wn
5 5
[}
4 80- £
E T 0.999 -
0 5
NS -
5 60 «
e
e
(] -
2 L. @ 0.998
E (%]
S =X
zZ ~ ie]
e < 0.997- .
o- N ENENERENRE e
5 S8 8 B ws .® 5 8 3 8ws.@
A _B 8 8 4R ud _Q_R 8 888 ud
Lo Eog? EN 90 93 Cofoz"EN2L G
oo @me =Y =0 S5 0= ERER R
8 828 ®Ts528 RN
=28 BTSEs £ 28 g¥oEg
3000 -
"0 m 2500
— o .
2]
2z s
p =
€ 30- > 2000 -
2
B 2
v 1500 -
2 20- £
©
g % 1000 -
< 10- =
.. o
0- ™= g g g g g o—_——fy g
5 S 5 5 .5 @ % 8 8 S ws.®
N R S 8 4% ad _n_3 8 218 g3
Lo Eo g7 EN 90 97 Eofog ' EN22 3Q
oo mo Y =0 55 L& Do @mo Q=0 sC 0E
8 8°g®gssEs 8 3°e®gEa35
= % 3 87" % 2 2§ gc=g

Figure 3: Clustering results for the SNPs dataset. Each of the 100 viral genomes from the search
benchmark was used to create 100 mutant sequences with SNPs in 1% of their bases. The tools were run
on this collection of 10,100 genomes and were expected to cluster them into 100 groups, corresponding
to the original genomes.

In the fragments dataset, MMseqs achieved an ARI of 1.0 while Blini achieved an ARI of
0.999, 0.999, 0.998 and 0.989 with scales 25, 50, 100 and 200 (Figure 4b). Blini grouped
the dataset into 100, 104, 135 and 386 clusters, while MMseqs grouped the dataset into 101
clusters (Figure 4a). The decline in performance with increasing scale is discussed below under
Limitations. Blini took on average 20 seconds, and MMseqs took 80 seconds with one thread,
and 24 seconds with four threads (Figure 4c). In terms of memory, Blini had a maximal
memory footprint of 462, 233, 119, and 67 MB using scales 25, 50, 100 and 200 respectively.
MMsegs had a maximal memory footprint of 5632 MB (Figure 4d).

Lavon. (2026). Blini: lightweight nucleotide sequence search and dereplication. Journal of Open Source Software, 11(117), 9494. https: 5
//doi.org/10.21105/joss.09494.


https://doi.org/10.21105/joss.09494
https://doi.org/10.21105/joss.09494

The Journal of Open Source Software

A. B
400 - 1.002 -
« 1.000 -
4 [}
%300' 80-998'
a i
5 © 0.996 -
Y ©
S 200 - < 0.994 -
= e
[
et 3]
g 2 0.992 -
=)
> 100 - =
= T 0.990-
0.988 - .
A _B 8 8 4R ud _Q_3 8 848 ud
o Eoe” EN 2L 03 CoCoweT N 20 o3
To oo =0 =0 25 v To DT =0=02c 0L
R i S £ Rk b o £
=28 BTSEs £ 28 8¥2=g
C D.
80 -
5000 -
ey [an]
2]
< 60 -
o 2 4000 -
£ z
S
oy £ 3000
4 :
§ < 2000 -
. ©
- II.I e
0- ™= g g g g g o—_—?fy g
& _R3 8 3 58 ug _&._3 8 858 ug
Eo Lozl Y 8¢ €8 Eofogl Y 22 g8
=geg=gag il it =gegegeyisis
= % 8 87° % 2 28 g¥c3g

Figure 4: Clustering results for the fragments dataset. Each of the 100 viral genomes from the search
benchmark was used to create 300 random fragments of length 1000 bases and above. The tools were run
on this collection of 30100 genomes and were expected to cluster them into 100 groups, corresponding
to the original genomes.

Limitations

The scale parameter controls how much information Blini can work with. While a higher
scale reduces resource consumption, it also means that distances are calculated based on less
information, which means a higher sampling error. For example, a 100-base sequence has
fewer than 100 k-mers, which means fewer than 100 hashes. With the default scale of 100, it
means on average less than one hash for a 100-base sequence. Using a binomial proportion

error estimation o... = /Cni i
err — [AgubN By’

are the subsamples of sets A and B, a subsample of at least 25 k-mers is required in order
to reduce the Jaccard estimation error below 10%. Therefore, Blini is effective for sequences
at least 25 times longer than the chosen scale value. For the default value of 100, sequences
shorter than 2,500 bases are likely to be falsely missed. This can be seen in Figure 3, where
clustering of sequences of length 1000+ bases was less accurate with a scale value of 200.
While the scale can be tweaked, this tool might not be suitable for short reads.

where J is the true Jaccard similarity and A, and By,

Blini also currently only works for nucleotide sequences. Amino acid sequences might be added
in the future. On the technical side, Blini is currently single-threaded. Multithreading can be
considered in the future if a concrete need arises.

Lavon. (2026). Blini: lightweight nucleotide sequence search and dereplication. Journal of Open Source Software, 11(117), 9494. https: 6
//doi.org/10.21105/joss.09494.


https://doi.org/10.21105/joss.09494
https://doi.org/10.21105/joss.09494

The Journal of Open Source Software

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local
alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.
1016/50022-2836(05)80360-2

Brown, C. T., & Irber, L. (2016). Sourmash: A library for MinHash sketching of DNA. Journal
of Open Source Software, 1(5), 27. https://doi.org/10.21105/joss.00027

Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S., &
Phillippy, A. M. (2016). Mash: Fast genome and metagenome distance estimation using
MinHash. Genome Biology, 17, 1-14. https://doi.org/10.1186/s13059-016-0997-x

Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F., Beghini, F., Manghi,
P., Tett, A., Ghensi, P., & others. (2019). Extensive unexplored human microbiome
diversity revealed by over 150,000 genomes from metagenomes spanning age, geography,
and lifestyle. Cell, 176(3), 649-662. https://doi.org/10.1016/]j.cell.2019.01.001

Pruitt, K. D., Tatusova, T., & Maglott, D. R. (2007). NCBI reference sequences (RefSeq): A
curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic
Acids Research, 35(suppl_1), D61-D65. https://doi.org/10.1093/nar/gkl842

Simmonds, S. E., Ly, L., Beaulaurier, J., Lim, R., Morse, T., Thakku, S. G., Rosario, K.,
Perez, J. C., Puschnik, A., Mwakibete, L., & others. (2024). CZ ID: A cloud-based,
no-code platform enabling advanced long read metagenomic analysis. bioRxiv, 2024—2002.
https://doi.org/10.1101/2024.02.29.579666

Steinegger, M., & Séding, J. (2018). Clustering huge protein sequence sets in linear time.
Nature Communications, 9(1), 2542. https://doi.org/10.1038/s41467-018-04964-5

Lavon. (2026). Blini: lightweight nucleotide sequence search and dereplication. Journal of Open Source Software, 11(117), 9494. https: 7
//doi.org/10.21105/joss.09494.


https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.21105/joss.00027
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1016/j.cell.2019.01.001
https://doi.org/10.1093/nar/gkl842
https://doi.org/10.1101/2024.02.29.579666
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.21105/joss.09494
https://doi.org/10.21105/joss.09494

	Summary
	Statement of need
	Algorithm
	Fingerprinting with k-mers
	Similarity estimation
	Search
	Clustering

	Performance evaluation
	Search - small
	Search - big
	Clustering

	Limitations
	References

