The Journal of Open Source Software

RustSASA: A Rust Crate for Accelerated Solvent
Accessible Surface Area Calculations

Maxwell J. Campbell ©

1 University of California, San Francisco, United States of America
DOI: 10.21105/joss.09537

Software
« Review &2 Summary
= Repository @
« Archive & Solvent accessible surface area (SASA) calculations are fundamental for understanding protein

structure, function, and dynamics in computational biology, providing insights into protein
folding, stability, and intermolecular interactions. The Shrake-Rupley algorithm has served as
the standard method since 1973, but existing implementations often become computational
bottlenecks when analyzing large protein datasets or molecular dynamics trajectories. As
structural biology databases continue to expand, exemplified by AlphaFold’s hundreds of millions
of predicted structures, the need for efficient SASA calculation tools has increased dramatically.
= @kliment-olechnovic RustSASA addresses this challenge through a high-performance implementation written in
Rust, leveraging efficient parallelization abstractions and SIMD instructions. Benchmarking
demonstrates a 5x speed improvement over FreeSASA for proteome-scale calculations and a
20x improvement for molecular dynamics trajectory analysis. Validation against FreeSASA
License yields Pearson correlation coefficients exceeding 0.99 on both the predicted E. coli proteome
Authors of papers retain copyright and the FreeSASA evaluation dataset, confirming calculation accuracy. RustSASA provides
and release the work under a interfaces for multiple programming languages (Rust and Python), a command-line interface,
Creative Commons Attribution 4.0 d integration with the MDAnalysis framework (Gowers et al., 2016; Michaud-Agrawal et al.
International License (CC BY 4.0). and Integrat nay . L ' 8 '
2011), ensuring broad accessibility across the computational biology community. The source
code is freely available at https://github.com/maxall41/RustSASA.

Editor: Prashant Jha 7
Reviewers:

= @mittinatten

Submitted: 17 July 2025
Published: 12 January 2026

Statement of need

As proteomics datasets continue to grow with initiatives like AlphaFold producing hundreds
of millions of predicted protein structures, existing SASA calculation tools have become
a significant bottleneck in structural biology workflows. Popular implementations such as
those in Biopython and FreeSASA, while accurate, become prohibitively slow when processing
large protein datasets or extended molecular dynamics trajectories. RustSASA addresses this
performance gap by leveraging efficient parallelization abstractions via Rayon, readily available
SIMD instructions via Pulp, and a highly optimized spatial grid. These optimizations enable
RustSASA's performance advantage over the simpler C implementation of the same algorithm
in FreeSASA. The resulting performance gains reduce computational costs for high-throughput
structural analyses and make previously intractable large-scale comparative studies feasible.

Results

Calculation Quality

To evaluate the accuracy of RustSASA calculations, we compared results to FreeSASA (Mit-
ternacht, 2016) on both the predicted E. coli proteome from AlphaFold DB (Jumper et al.,
2021; Varadi et al., 2021) and the FreeSASA evaluation dataset. RustSASA produces SASA

Campbell. (2026). RustSASA: A Rust Crate for Accelerated Solvent Accessible Surface Area Calculations. Journal of Open Source Software, 1
11(117), 9537. https://doi.org/10.21105/joss.09537.

https://orcid.org/0000-0002-0959-1164
https://doi.org/10.21105/joss.09537
https://github.com/openjournals/joss-reviews/issues/9537
https://github.com/maxall41/RustSASA
https://doi.org/10.5281/zenodo.16958791
https://prashjha.github.io/
https://orcid.org/0000-0003-2158-364X
https://github.com/mittinatten
https://github.com/kliment-olechnovic
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.09537

The Journal of Open Source Software

values that closely match those from FreeSASA, achieving an RMSE of ~44 on both datasets
(Figure 1).

les A. AlphaFold E. coli proteome B. FreeSASA dataset

=
N]
1

n = 4370 % n =160 ’”
r=1.0000 ’ r=1.0000 ’
p = 0.00e+00 e 44 |p=0.00e+00 7
RMSE = 43.53 4 RMSE = 43.99 4

fury
o
1
AN
L)
L)
N

o
©
1
o
R

RustSASA Chain Total
o o
> o
1 1
RustSASA Chain Total
N
1

o
N
1

o
o
1
o
1

T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 1 2 3 4

FreeSASA Chain Total 1e5 FreeSASA Chain Total led

Figure 1: A. Comparing RustSASA against FreeSASA on E. coli proteome at the chain level. B.
Comparing RustSASA against FreeSASA on FreeSASA comparison dataset at the chain level.

Performance

We evaluated the performance of FreeSASA, RustSASA, and Biopython (Cock et al., 2009)
across four evaluations. First, we performed multi-threaded SASA calculations for all proteins
in the E. coli proteome. Second, we evaluated the performance of these methods on a single
randomly selected protein (AOA385XJ53) from the AlphaFold E. coli proteome. Third, we
evaluated the single-threaded performance of RustSASA and FreeSASA on the E. coli proteome.
Biopython was excluded from this benchmark due to its poor performance hindering timely
evaluation. Fourth, we evaluated the performance of RustSASA against mdakit-sasa, which
uses FreeSASA internally, on a molecular dynamics trajectory, specifically trajectory 10824
(41AQ, 5HT receptor) from GPRCmd (Rodriguez-Espigares et al., 2020).

For the full proteome benchmarks (Figure 2A), we used Hyperfine (Peter, 2023) with 3 runs
and 3 warmup iterations. All methods utilized parallel processing across eight cores. GNU
parallel (Tange, 2011) was used to parallelize FreeSASA and Biopython, while RustSASA
utilized its internal parallelization. RustSASA processed the entire proteome in ~5 seconds
compared to ~28 seconds for FreeSASA and ~328 seconds for Biopython, representing 5x and
63x speed improvements, respectively.

For the single-protein benchmark (Figure 2B), we used Hyperfine with 3 warmup iterations
and 25 runs. RustSASA processed the protein in 4.0 ms (£0.5), FreeSASA processed the
protein in 4.0 ms (+0.2), and Biopython processed the protein in 250.8 ms (£2.0). On the
single-threaded benchmark (Figure 2C), RustSASA processed the proteome in 26.0 seconds
compared to 46.2 seconds for FreeSASA, representing a ~43% performance improvement,
demonstrating that RustSASA’s performance advantage is not solely due to multi-threading.

For the molecular dynamics trajectory benchmark (Figure 2D), we used Hyperfine with 3
runs. RustSASA processed the trajectory in 22.7 seconds (+1.4), where mdakit-sasa processed
the trajectory in 448.4 seconds (+1.3), representing a ~20x performance improvement. The
magnitude of the improvement can be attributed to the inefficiency with which mdakit-sasa
utilizes FreeSASA.

Campbell. (2026). RustSASA: A Rust Crate for Accelerated Solvent Accessible Surface Area Calculations. Journal of Open Source Software, 2
11(117), 9537. https://doi.org/10.21105/joss.09537.

https://doi.org/10.21105/joss.09537

The Journal of Open Source Software

A. Performance Comparison on E. coli Proteome B. Performance Comparison on AOA385X)53
400
328.7s 251ms
350 250
3004 m
- T 2001
2 250 S
S 2
& 2004 = 150
2 150 £
£ T 2 100
F £
100 =
50
50 28.0s
5.5s 4ms 4ms
0- 0 T T
rust-sasa freesasa biopython rust-sasa freesasa biopython
C. Single-Threaded Performance on E. coli Proteome D. Performance Comparison on Molecular Dynamics
500
50 46.25 448.4s
400
m m
2 2
o o 300+
[9) 1Y)
[} [}
2 2
) < .
£ £29°
[=
100
22.7s

rust-sasa freesasa rust-sasa mdakit-sasa

Figure 2: A. Comparing the multi-threaded performance of RustSASA, FreeSASA, and Biopython on the
full AlphaFold E. coli proteome. B. Comparing the multi-threaded performance of RustSASA, FreeSASA,
and Biopython on AOA385XJ53, a protein randomly selected from the AlphaFold E. coli proteome. C.
Comparing the single-threaded performance of RustSASA and FreeSASA on the full AlphaFold E. coli
proteome. D. Comparing the performance of RustSASA and mdakit-sasa (based on FreeSASA) on a
molecular dynamics trajectory.

Methods

RustSASA computes solvent-accessible surface areas (SASA) using the Shrake-Rupley algorithm
(Shrake & Rupley, 1973). In this algorithm, each atom is represented as a sphere with a radius
equal to its atomic van der Waals radius plus the radius of a spherical solvent probe; the
sphere surface is sampled with a dense quasi-uniform distribution of test points and a point
is considered solvent-accessible if it is not occluded by any neighboring atom sphere. For all
calculations reported here, a solvent probe radius of 1.4 A (the approximate radius of a water
molecule) was used.

Atomic radii were assigned following the ProtOr parameter set introduced by Tsai et al. (Tsai et
al., 1999). These radii were applied to all non-hydrogen heavy atoms present in the structures;
hydrogen atoms, when present in input files, were ignored for the SASA computations to
maintain consistency with common practice for protein SASA estimation. Additionally, all
HETATM records in the input—non-standard amino acids and ligands—were ignored.

To ensure a fair comparison of RustSASA and FreeSASA in the single-threaded benchmark, a
C++ script was utilized to call the FreeSASA C API for all input proteins in a given folder.
This approach ensures that the command-line overhead is not responsible for RustSASA’s
performance advantage. Furthermore, in all experiments, FreeSASA was configured to use the
Shrake-Rupley algorithm over its default algorithm, Lee & Richards, to ensure an accurate
comparison between the methods. Proteome-scale structure models for Escherichia coli
were obtained from the AlphaFold DB (entry UP000000625_83333_ECOLI_v6, available
at https://alphafold.ebi.ac.uk/download). All experiments were conducted on a 2024 Apple

Campbell. (2026). RustSASA: A Rust Crate for Accelerated Solvent Accessible Surface Area Calculations. Journal of Open Source Software, 3
11(117), 9537. https://doi.org/10.21105 /joss.09537.

https://doi.org/10.21105/joss.09537

The Journal of Open Source Software

MacBook Air with an M3 processor and 24GB of unified memory.

Acknowledgements

We would like to thank Rodrigo Honorato and Niccolo Bruciaferri for their valuable contributions
to this project. Additionally, we would like to thank the reviewers for their insightful comments.

References

Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I.,
Hamelryck, T., Kauff, F., Wilczynski, B., & others. (2009). Biopython: Freely available
python tools for computational molecular biology and bioinformatics. Bioinformatics,
25(11), 1422-1423. https://doi.org/10.1093/bioinformatics/btp163

Gowers, R. J., Linke, M., Barnoud, J., Reddy, T. J. E., Melo, M. N., Seyler, S. L., Domanski,
J., Dotson, D. L., Buchoux, S., Kenney, |. M., & Beckstein, O. (2016). MDAnalysis: A
Python package for the rapid analysis of molecular dynamics simulations. SciPy 2016.
https://doi.org/10.25080/Majora-629e541a-00e

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard,
A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., .. Hassabis, D.
(2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873),
583-589. https://doi.org/10.1038/s41586-021-03819-2

Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). MDAnalysis:
A toolkit for the analysis of molecular dynamics simulations. Journal of Computational
Chemistry, 32(10), 2319-2327. https://doi.org/10.1002/jcc.21787

Mitternacht, S. (2016). FreeSASA: An open source c library for solvent accessible surface area
calculations. FI000Research, 5, 189. https://doi.org/10.12688/f1000research.7931.1

Peter, D. (2023). Hyperfine. https://github.com/sharkdp/hyperfine

Rodriguez-Espigares, I., Torrens-Fontanals, M., Tiemann, J. K. S., Aranda-Garcia, D., Ramirez-
Anguita, J. M., Stepniewski, T. M., Worp, N., Varela-Rial, A., Morales-Pastor, A., Medel-
Lacruz, B., Pandy-Szekeres, G., Mayol, E., Giorgino, T., Carlsson, J., Deupi, X., Filipek,
S., Filizola, M., Gémez-Tamayo, J. C., Gonzalez, A., .. Selent, J. (2020). GPCRmd
uncovers the dynamics of the 3D-GPCRome. Nature Methods, 17(8), 777-787. https:
//doi.org/10.1038/s41592-020-0884-y

Shrake, A., & Rupley, J. A. (1973). Environment and exposure to solvent of protein atoms.
Lysozyme and insulin. Journal of Molecular Biology, 79(2), 351-371. https://doi.org/10.
1016/0022-2836(73)90011-9

Tange, O. (2011). GNU parallel - the command-line power tool. ;Login: The USENIX
Magazine, 36(1), 42—-47. http://www.gnu.org/s/parallel

Tsai, J., Taylor, R., Chothia, C., & Gerstein, M. (1999). The packing density in proteins:
Standard radii and volumes. Journal of Molecular Biology, 290(1), 253-266. https:
//doi.org/10.1006/jmbi.1999.2829

Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D.,
Stroe, O., Wood, G., Laydon, A., Zidek, A., Green, T., Tunyasuvunakool, K., Petersen, S.,
Jumper, J., Clancy, E., Green, R, Vora, A., Lutfi, M., .. Velankar, S. (2021). AlphaFold
protein structure database: Massively expanding the structural coverage of protein-sequence
space with high-accuracy models. Nucleic Acids Research, 50(D1), D439-D444. https:
//doi.org/10.1093 /nar/gkab1061

Campbell. (2026). RustSASA: A Rust Crate for Accelerated Solvent Accessible Surface Area Calculations. Journal of Open Source Software, 4
11(117), 9537. https://doi.org/10.21105/joss.09537.

https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.25080/Majora-629e541a-00e
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1002/jcc.21787
https://doi.org/10.12688/f1000research.7931.1
https://github.com/sharkdp/hyperfine
https://doi.org/10.1038/s41592-020-0884-y
https://doi.org/10.1038/s41592-020-0884-y
https://doi.org/10.1016/0022-2836(73)90011-9
https://doi.org/10.1016/0022-2836(73)90011-9
http://www.gnu.org/s/parallel
https://doi.org/10.1006/jmbi.1999.2829
https://doi.org/10.1006/jmbi.1999.2829
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.21105/joss.09537

	Summary
	Statement of need
	Results
	Calculation Quality
	Performance
	Methods

	Acknowledgements
	References

