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Summary
Mie theory is a mathematical framework derived from Maxwell’s equations that models
electromagnetic scattering by spherical dielectric particles. Its predictions are essential across
various scientific and engineering disciplines, including biomedical optics, atmospheric optics,
particle characterization, nanofluids, computer graphics, and remote sensing. We developed
MieSimulatorGUI to bridge the gap for researchers who require Mie simulations but lack
specialized programming expertise. By integrating a high-performance C/C++ computational
engine with the Qt framework, this user-friendly cross-platform tool calculates key optical
properties such as scattering coefficients, cross-sections, angular scattering distributions, and
scattering asymmetry for both monodisperse and polydisperse particle distributions. The
graphical user interface (GUI) features six interactive panels that allow users to specify optical
and particle input parameters, visualize particle distributions, and compute scattering metrics.
Furthermore, it enables the fitting of the spectral dependence of the reduced scattering
coefficient, a feature particularly valuable in fields like tissue optics. Licensed under MIT,
MieSimulatorGUI is an open-source project hosted on GitHub and accessible via its download
page.

Statement of need
Mie theory is derived from Maxwell’s equations and provides a comprehensive framework for
modeling electromagnetic scattering by spherical particles (Horvath, 2009; Mie, 1908). Mie
theory is utilized across diverse fields, ranging from nanomaterials and biomedical optics to
atmospheric science and astronomy (Bhandari et al., 2011; Chalut et al., 2008; Goody &
Yung, 1995; Saidi et al., 1995; Wang et al., 2005). Despite its broad applicability, the theory’s
reliance on complex mathematical constructs, such as infinite series and special functions
(Bohren & Huffman, 1983; Majic & Le Ru, 2020; van de Hulst, 1957; Wiscombe, 1980),
demands advanced computational implementation.

While numerous Mie simulation packages are available (many of which are listed on
SCATTPORT.org and Wikipedia), they generally fall into two categories: older, established
codes focusing on computational efficiency (Bohren & Huffman, 1983; Wiscombe, 1980), and
newer, object-oriented libraries typically hosted on version-control platforms (de Sivry-Houle
et al., 2023; Giannakopoulos, Ilias, 2018; Prahl, 2023; Sumlin et al., 2018). Although both
categories provide robust computational engines, they usually demand significant programming
proficiency. This requirement creates a barrier for experimentalists, clinical scientists, and
educators who need these analytical capabilities but may lack the specialized coding expertise
to integrate such libraries into their workflows.

Ranasinghesagara et al. (2026). MieSimulatorGUI: A user-friendly tool to compute and visualize light scattering by spherical dielectric particles.
Journal of Open Source Software, 11(118), 9551. https://doi.org/10.21105/joss.09551.

1

https://orcid.org/0000-0002-6069-6527
https://orcid.org/0000-0001-5696-160X
https://orcid.org/0009-0009-0291-5099
https://orcid.org/0000-0003-4781-1049
https://doi.org/10.21105/joss.09551
https://github.com/openjournals/joss-reviews/issues/9551
https://github.com/VirtualPhotonics/MieSimulatorGUI
https://doi.org/10.5281/zenodo.18462320
https://finsberg.github.io
https://orcid.org/0000-0003-3766-2393
https://github.com/MartinPdeS
https://github.com/GiannakopoulosIlias
https://github.com/ayusmin
https://creativecommons.org/licenses/by/4.0/
https://github.com/VirtualPhotonics/MieSimulatorGUI
https://github.com/VirtualPhotonics/MieSimulatorGUI/wiki/Downloads
https://github.com/VirtualPhotonics/MieSimulatorGUI/wiki/Downloads
https://scattport.org/index.php/light-scattering-software
https://en.wikipedia.org/wiki/Codes_for_electromagnetic_scattering_by_spheres
https://doi.org/10.21105/joss.09551


MieSimulatorGUI bridges this gap by providing an intuitive, cross-platform desktop application
that computes and fits scattering parameters for monodisperse and polydisperse distributions
without any coding. Unlike standard implementations, it supports heterogeneous polydispersity,
allowing users to assign bin-specific complex refractive indices via custom data inputs, a
feature often absent in simplified GUI tools. The tool facilitates high-impact use cases such as
biomedical optics (Jacques, 2013; Mourant et al., 1997; Wang et al., 2005) and atmospheric
research (Seinfeld & Pandis, 1997; Teri et al., 2022), where users can define complex particle
configurations and directly fit spectrally-varying reduced scattering coefficients. By integrating
a powerful C/C++ computational engine with intuitive Qt interface, MieSimulatorGUI offers
accessible, yet powerful Mie theory computations, facilitating both streamlined research analysis
and interactive pedagogical demonstrations.

Main Features
Built on the BHMIE (Bohren & Huffman, 1983) and Wiscombe (Wiscombe, 1979) frameworks,
MieSimulatorGUI calculates spectral optical properties, including scattering coefficients, cross-
sections, scattering amplitude matrix entries (𝑆1, 𝑆2), phase functions, and scattering
asymmetry. The tool supports both monodisperse and polydisperse particle distributions
(Gélébart et al., 1996) and facilitates parameter estimation by fitting reduced scattering
coefficient curves, a technique of significant value in tissue optics (Jacques, 2013). To ensure
computational accuracy and GUI stability, the software includes an automated test suite
integrated via GitHub Actions. Its high-performance C++ engine enables near-instantaneous
computation and plotting, providing real-time visual updates across the spectral range.
Comprehensive documentation, including cross-platform installation guides (Windows, Linux,
and macOS), dependency specifications, command-line test execution, scattering regime
analysis for dependent scattering, and several examples, is available on the Mie Simulator GUI
Wiki page.

Figure 1: Six interactive panels of MieSimulatorGUI: (a) Input selection, (b) Particle size
distribution, (c) Scattering coefficient, (d) Phase function, (e) Reduced Scattering, and (f)
Scattering Asymmetry (Anisotropy)
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Design and Functionality
The tool is distributed as portable binaries for Windows, macOS, and Linux. For local
compilation, the project utilizes qmake, with dependencies (Qt6 and QCustomPlot) managed
via an automated build script. The Qt GUI contains six interactive panels (Figure 1).

Input Selection Panel
This panel enables the user to define inputs for Mie simulations at either a single wavelength
or across a spectral range. The distribution of spheres is described using sphere concentration
(Conc) (spheres/mm3) or volume fraction (Vol Frac). The volume fraction represents the
ratio of the volume occupied by the spherical particles to the total solution volume. For
polydisperse systems, Vol Frac is calculated by multiplying the volume of each sphere size
with its corresponding concentration per unit volume, and then summing across all sphere sizes.
MieSimulatorGUI utilizes the independent scattering approximation, a framework valid for dilute
suspensions where particles are sufficiently separated to ignore coherent interactions (Schmitt
& Kumar, 1998; van de Hulst, 1957). The accuracy of this approximation decreases as volume
fraction increases, as it is sensitive to Size Parameter and the ratio of particle spacing to
wavelength (Galy et al., 2020; Tien & Drolen, 1987; Yalcin et al., 2022). Consequently, the tool
is best suited for dilute systems and the results obtained for concentrated regimes may deviate
from physical reality and should be interpreted with caution. Starting with MieSimulatorGUI

v2.0, the tool triggers a warning if the inputs exceed the limits of independent scattering.

To maintain numerical stability in the BHMIE algorithm and ensure UI responsiveness, sphere
diameters are restricted to a range of 0.1 nm to 300 µm, while wavelengths are limited to 50
nm – 3000 nm. These ranges cover the primary biomedical and atmospheric spectral windows.
For absorbing spheres, the complex refractive index (𝑚𝑠𝑝ℎ𝑒𝑟𝑒) is defined as 𝑚𝑟𝑒𝑎𝑙 – j 𝑚𝑖𝑚𝑎𝑔,
where 𝑚𝑟𝑒𝑎𝑙 and 𝑚𝑖𝑚𝑎𝑔 represent real and imaginary components, respectively (van de Hulst,
1957; Wiscombe, 1979).

The tool provides options for either monodisperse (uniform-sized) or polydisperse (variable-
sized) particle distributions. Monodisperse distributions restrict analysis to spheres with
uniform size and refractive index. In contrast, polydisperse distributions enable simulations
of spheres with diverse attributes and support three size distribution models: 1. Log-normal,
2. Gaussian, and 3. Custom (user-defined). The Custom option allows for the specification of
different refractive indices for different spheres, as demonstrated in the examples provided in
the CustomDataSamples folder.

Number Density Panel

This panel graphically presents the number density of spheres 𝑁𝑠 [#/ mm3] used in the
simulation. The subsequent tab displays the Size Parameter defined as 2𝜋𝑅𝑛𝑚𝑒𝑑/𝜆𝑣𝑎𝑐𝑢𝑢𝑚
(Bohren & Huffman, 1983), where 𝑅 [ µm ] denotes the particle radius, 𝑛𝑚𝑒𝑑 the medium’s
refractive index, and 𝜆𝑣𝑎𝑐𝑢𝑢𝑚 [ µm ] is the wavelength in vacuum.

Scattering Coefficient Panel
The Mie calculations provide three important efficiency factors: the scattering efficiency
(𝑄𝑠𝑐𝑎), the extinction efficiency (𝑄𝑒𝑥𝑡), and the backscattering efficiency (𝑄𝑏𝑎𝑐𝑘). These
dimensionless quantities combined with the particle’s cross sectional area (𝜋𝑅2) yield the
corresponding scattering cross section 𝐶𝑠𝑐𝑎 [ /mm2 ], extinction cross section 𝐶𝑒𝑥𝑡 [ /mm2

] and backscattering cross section 𝐶𝑏𝑎𝑐𝑘 [ /mm2 ] (Bohren & Huffman, 1983; van de Hulst,
1957). The calculated cross sections are displayed across three separate tabs. For monodisperse
distribution, the scattering coefficient (𝜇𝑠) is simply the product of the scattering cross-section
𝐶𝑠𝑐𝑎 and the number density 𝑁𝑠. For polydisperse distributions, the scattering coefficient is
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computed via a discrete summation of the cross-sections across individual particle size bins, as
detailed by Schmitt and Kumar (Schmitt & Kumar, 1998).

Phase Function Panel
The phase function represents the angular distribution of scattered light. The calculated phase
function results are displayed in this panel using both polar and linear plots. These plots are
derived from the complex amplitude scattering matrix elements, 𝑆1, and 𝑆2, which describe
the transformation of incident electromagnetic field to far-field scattered field (Bohren &
Huffman, 1983; van de Hulst, 1957). The wavelength slider allows the user to visualize the
phase function or 𝑆1 and 𝑆2 data at any specific wavelength.

Scattering Asymmetry Panel
The scattering asymmetry (Anisotropy) panel displays the directional properties of the scattering
phase function. The first tab presents the average cosine of the single scattering phase function
( 𝑔 ), which quantifies the prevalence of forward ( 𝑔 > 0 ) vs backward scattering ( 𝑔 < 0 ).
The second tab provides the integrated forward and backward scattering fractions, offering a
detailed analysis of the angular scattering distribution.

Reduced Scattering Panel
This panel shows the reduced scattering coefficient ( 𝜇′

𝑠 ), which is computed as the product
of the scattering coefficient (𝜇𝑠) and (1 − 𝑔) (Jacques, 2013). This parameter of particular
interest in biomedical optics, as it enables the non-invasive quantification of tissue properties.
Users can use 𝜇′

𝑠 Power Law Fitting tab to compute the fitting parameters that provide a
simplified functional form for the wavelength dependence of 𝜇′

𝑠 (Jacques, 2013).

Example Application: Scattering of Intralipid Phantoms
To demonstrate the tool’s scientific utility, we considered the characterization of Intralipid,
a standard tissue phantom in biomedical optics (Di Ninni et al., 2011; van Staveren et al.,
1991). Based on Intralipid particle distribution profiles in the literature (Kodach et al., 2011;
Raju & Unni, 2017), we assumed a polydisperse Log Normal particle distribution with a mean
diameter of 0.22 µm and a standard deviation of 0.37 µm. We set the refractive indices to
1.47 for the soybean oil droplets and 1.33 for the surrounding medium, while assigning a value
of 101 to the Num. sph. sizes field. To analyze different concentrations ranging from 0.2%
to 20% (Aernouts et al., 2013; van Staveren et al., 1991), volume fractions were scaled using a
baseline value of 0.227 for a 20% (w/w) Intralipid concentration (Aernouts et al., 2013). Upon
executing the simulation across the 400–2250 nm spectral range, MieSimulatorGUI calculates
𝜇𝑠, 𝜇′

𝑠 and 𝑔. While the selected volume fractions may exceed independent scattering limits
established in the literature (Galy et al., 2020; Tien & Drolen, 1987; Yalcin et al., 2022), the
results show strong agreement with established bulk scattering properties (Aernouts et al.,
2013; van Staveren et al., 1991). Figures can be exported as .png files and results as text files
for further analysis. Beyond preset distributions, the Custom option can be utilized to upload
specific Intralipid sphere profiles (Raju & Unni, 2017).
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