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Summary

Open Computational Chemistry (OCC) is a modern software library designed for calculating
the properties and electronic structure and interactions of molecules and molecular crystals.
The software serves a dual purpose: it provides an open, accessible platform for researchers
developing new computational methods, while also being production-ready and fast enough
for relatively large-scale calculations on personal computers and high-performance computing
systems alike.

Many traditional computational chemistry programs require complex installation procedures
or rely on large dependencies can only run on specific operating systems. OCC is designed
as a priority to be portable: it runs on Windows, macOS, and Linux, provides interfaces
for C++, Python, and JavaScript, and with the capability to even run entirely within web
browsers through WebAssembly (WASM), making computational chemistry accessible without
specialized hardware or software installation. OCC is already widely used as the primary
computational backend of CrystalExplorer (Spackman et al., 2021), a widely-used graphical
program for crystal structure analysis, providing capabilities such as automatic calculation
of interaction energies between molecules in crystals, accurate determination of total crystal
energies with automatic convergence checking, and evaluation of electron density distributions.

Statement of need

The landscape of computational chemistry software is dominated by established packages
that, while powerful, often suffer from legacy codebases, limited portability, and barriers
to modification. Most existing quantum chemistry software requires complex installation
procedures and system-level dependencies, limiting accessibility for educational purposes and
rapid prototyping. Furthermore, the integration between quantum chemistry and crystallography
remains fragmented across different specialized tools, requiring researchers to chain together
multiple incompatible programs for multi-scale workflows.

OCC addresses these challenges as an open, portable, and modifiable platform for computational
chemistry and crystallography. The software serves dual purposes: as a computational backend
for production applications like CrystalExplorer, a widely-adopted graphical tool for crystal
structure analysis, and as a research platform for developing new computational methods.
This distinguishes OCC from purely academic codes (often limited in scope, modifiability or
performance) and purely commercial alternatives (which lack transparency and modifiability).
In a similar spirit to Psi4 (Smith et al., 2020) and PySCF (Sun et al., 2020), OCC prioritises
extensibility and openness, with a unique focus on the properties and interactions of molecular
crystals.
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Key features enabling this versatility include:

Portability and Accessibility: OCC is, to our knowledge, the first full-featured quantum
chemistry package that can run entirely in web browsers via WASM, enabling interactive
calculations without installation or specialized hardware, on computers, tablets, phones or any
device with a browser supporting WASM. Native builds support Windows, macOS, and Linux
with comprehensive continuous integration testing, while language bindings for C++, Python,
and JavaScript facilitate integration into diverse workflows.

Unified Framework: By integrating electronic structure methods with crystallographic analysis
in a single modern C++ codebase, OCC eliminates the friction of multi-scale workflows. Unique
capabilities include crystal growth free energy predictions bridging molecular-level calculations
and macroscopic properties, automatic lattice energy convergence, and pairwise interaction
energy calculations used in production by CrystalExplorer.

Open and Modifiable: The codebase follows contemporary software development best practices
including comprehensive continuous integration testing across all platforms, automated releases
for Python packages via PyPl, and Javascript via NPM and well-documented APIs with
dependency management via CPM.cmake. This enables researchers to rapidly develop and
test new methods. Unlike monolithic legacy codes, OCC’s modular architecture facilitates
extension and modification for specific research needs.

Implementation and Features

OCC implements Hartree-Fock and Density Functional Theory (DFT) with support for LDA,
GGA, and meta-GGA functionals via libxc (Lehtola et al., 2018), density fitting (RI-JK) methods
for Coulomb and exchange interactions, implicit solvation via COSMO (Klamt & Schiirmann,
1993) and SMD (Marenich et al., 2009), and dispersion corrections (XDM (Becke & Johnson,
2007; Johnson & Becke, 2006; Otero-de-la-Roza & Johnson, 2012), DFTD4 (Caldeweyher et al.,
2017, 2019, 2020)). For crystallography, OCC provides CIF file processing via gemmi (Wojdyr,
2022), fast periodic bond detection, symmetry-unique molecule generation, CrystalExplorer
model energies (Mackenzie et al., 2017; Spackman, Spackman, et al., 2023), and automatic
pair-based lattice energy summation for neutral molecular crystals with symmetry.

Unique capabilities include crystal growth free energy predictions (Spackman, Walisinghe,
et al., 2023) combining lattice energies, interaction energy decomposition, and
vibrational /configurational entropy contributions.  The distributed multipole analysis
(DMA) (Stone, 2005) implementation provides multipole expansions up to hexadecapole
level with GDMA-compatible output. WebAssembly compilation via Emscripten (Zakai,
2011) enables full-featured quantum chemistry calculations directly in web browsers,
supporting interactive educational tools and client-side computational workflows without server
infrastructure.

OCC employs a modular C++ architecture using Eigen3 (Guennebaud et al., 2010) for linear
algebra, libcint (Sun, 2015) for integral evaluation, and libecpint (R. A. Shaw & Hill, 2017; R.
Shaw & Hill, 2021) for effective core potentials.

Performance

Native builds provide performance comparable to established quantum chemistry packages
through optimized integral evaluation, SIMD instructions, and parallel execution, while
WebAssembly builds offer unprecedented accessibility with acceptable performance overhead
for educational and prototyping use cases.
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Availability and Documentation

OCC is available as open-source software under the GNU General Public License v3 at
https://github.com /peterspackman/occ. Pre-built Python packages are available via PyPlI
(occpy). WebAssembly builds can be integrated via npm or used directly in browsers.
Comprehensive continuous integration testing ensures reliability across Windows, macOS, and
Linux platforms for all language bindings (C++, Python, JavaScript/WASM). Documentation
at https://getocc.xyz includes interactive tutorials, where the code runs in the browser, complete
C++ API references, and examples.

Conclusions

OCC provides a modern, accessible platform for quantum chemistry and crystallography
that serves both as a research tool for method development and as a production-ready
library powering applications like CrystalExplorer. Its unique combination of traditional
electronic structure methods, crystallographic analysis, and WebAssembly support addresses
key accessibility and integration challenges in computational chemistry. Future development
will focus on expanding functional support, implementing excited state methods, and adding
GPU acceleration.
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