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Software
« Review Summary
= Repository @
« Archive &z Direct solvers for linear algebraic systems scale cubically in the problem’s dimension, rapidly

becoming intractable for large-scale problems, while sparse factorization may still require
quadratic storage due to fill-in. Krylov techniques (Krylov, 1931) avoid these costs by needing
only a routine that computes a matrix-vector product, iteratively building a subspace from
which the solution is obtained, see Ipsen & Meyer (1998), Saad (2003), and Frantz et al.
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parallelisation), thus requiring a minimal set of changes without sacrificing computational
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LightKrylov provides Fortran users with SciPy-inspired interfaces to widely used Krylov
techniques, including:

= Linear systems - Conjugate Gradient (CG), Generalized Minimal Residual method
(GMRES), and Flexible GMRES (Saad, 1993).

= Spectral decomposition - Arnoldi method (with Krylov-Schur restart) for non-Hermitian
operators, Lanczos tridiagonalisation for Hermitian ones.

= SVD - Golub-Kahan bidiagonalisation.

It is a pure Fortran package, compliant with the 2018 standard, and requiring only the
community-led Fortran standard library stdlib (Kedward et al., 2022; Perini et al., 2026) as
dependency. Moreover, its build process relies on the Fortran package manager fpm, facilitating
its integration with the modern Fortran ecosystem.

A focus on abstract linear operators and abstract vectors

Krylov methods can be implemented without explicit reference to the data structure used to
represent a vector or linear operator, nor to how the matrix-vector product is implemented.
To do so, LightKrylov uses modern Fortran abstract types. A stripped-down version of the
abstract vector type is shown below.

type, abstract :: abstract_vector_rdp
contains
procedure(abstract_scal_rdp), pass(self), deferred :: scal
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procedure(abstract_axpby_rdp), pass(self), deferred :: axpby

procedure(abstract_dot_rdp), pass(self), deferred :: dot
end type

The type-bound procedures cover the basic operations on vectors: scalar-vector product, linear
combination of two vectors, and the dot product. These operations are the essential building
blocks required by Krylov algorithms. Their signatures follow, to the extent possible, the BLAS
standard. For instance, the abstract_axpby_rdp interface reads

abstract interface
subroutine abstract_axpby_rdp(alpha, vec, beta, self)

double precision, intent(in) :: alpha, beta
class(abstract_vector_rdp), intent(in) 1:ovec
class(abstract_vector_rdp), intent(inout) :: self

end subroutine
end interface

mimicking the signature of the (extended) BLAS-1 subroutine axpby. Abstract linear operators
are defined similarly, with two type-bound procedures required to implement the matrix-vector
and transpose (or Hermitian) matrix-vector product. Using abstract types enables us to focus
on the high-level implementation of the different algorithms while leaving the performance-
critical details to the users. In addition, LightKrylov exposes abstract types for preconditioners,
as well as a Newton-GMRES solver for nonlinear systems. After extending these abstract
types for their application, one can solve linear systems or compute eigenvalues as easily as
call gmres(A, b, x, info) or call eigs(A, V, lambda, residuals, info).

High-level comparison with other libraries

PETSc (Balay et al., 2025) is a widely used library for large-scale linear algebra problems,
especially those resulting from discretizations of partial differential equations. It can be
installed using various package managers (conda, apt, Homebrew, spack, etc.) and bindings
for several different languages exist (including C, Fortran, Python, Rust, and Julia). Yet, while
it offers more than Krylov methods, its many data structures can make integration difficult
into an already existing large code base when only linear solvers are needed.

LightKrylov is thus closer to Krylov.jl (Montoison & Orban, 2023) in Julia: a minimal
package with a high level of abstraction specialised for Krylov methods only. While the latter
offers a broader collection of methods, we are actively working to bridge the gap. Additionally,
calling Julia code from Fortran remains a delicate process, burdened by the two-language
problem. In that regard, the fact that LightKrylov is written in pure, standard-compliant
Fortran makes it an ideal candidate for integration into existing Fortran codebases. Moreover,
its high level of abstraction enables users to re-use existing components of their codebase
(including parallelisation), requiring only minimal changes while preserving computational
performance.

Performance in a production-ready open-source codebase

LightKrylov has been integrated into neklab, a toolbox for stability and bifurcation analysis
for the spectral element solver Nek5000. The abstract vector interface allows direct use of
Nek5000's distributed data structures, and the pure-Fortran nature facilitated integration with
its existing build system, demonstrating the library's suitability for large-scale HPC applications.
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Hydrodynamic stability of an unstable fixed point of the nonlinear Navier-
Stokes equations

Using the two-dimensional flow past a circular cylinder at Reynolds number of 100, we showcase
the efficient integration of LightKrylov and Nek5000 and validate the results with algorithms
provided by the KTH Framework toolbox (Massaro et al., 2024) based on the same solver.
Discretisation of the governing equations leads to systems with approximately 175,000 degrees
of freedom. All computations were run in parallel on 12 Intel Core Ultra 7 processors and the
numerical settings are identical for both libraries.

The unstable fixed point of the nonlinear Navier-Stokes equations is computed using both
LightKrylov's time-stepper-based Newton-GMRES solver and the selective frequency damping
implementation from KTH Framework . Likewise, the leading eigenpair of the corresponding
linearised Navier-Stokes operator is computed using LightKrylov's implementation of the
Krylov-Schur algorithm and the KTH Framework's wrapper for ARPACK (R. B. Lehoucq et al.,
1998).

A visual comparison is provided in Figure 1 showing excellent agreement. The table in the lower-
right panel of Figure 1 summarizes the wall-clock times of the neklab computations. Isolating
the intrinsic cost of the algorithms in LightKrylov from the cost of the calls to LAPACK
and the linear and nonlinear Navier-Stokes solvers (matvec and response, respectively) shows
that extended abstract types and object-oriented programming in Fortran incurs a negligible
computational overhead for such large-scale applications.
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Figure 1: Validation of LightKrylov: Newton-GMRES and eigs. The top row depicts the streamwise
velocity of the unstable solution computed using LightKrylov and the pointwise difference with the
reference one computed with KTH Framework.

Perspectives

Despite being in its early development stage, LightKrylov has already been used in
production runs on dozens of processors. It has also been interfaced with neko, a modernized
implementation of Nek5000 running on GPUs, and is currently being interfaced with dNamt, a
high-performance source code generator for hyperbolic partial differential equations. Current
development efforts include a Cmake build system for easier integration into non-fpm codes and
the implementation of the Saunders-Simon-Yip Krylov process (Saunders et al., 1988) for
solving saddle point problems ubiquitous in convex optimization.
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