
Bloch: a strongly typed, hardware-agnostic, hybrid
quantum programming language
Akshay Pal 1

1 Independent Researcher, United Kingdom
DOI: 10.21105/joss.09625

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @HectorMozo3110
• @joshiCoding

Submitted: 23 November 2025
Published: 29 January 2026

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Bloch is a modern quantum programming language and interpreter designed to feel familiar
to systems developers while remaining hardware-agnostic. The project combines a statically
typed surface language, a semantic analyser that guards against classical/quantum misuse
before execution, and an interpreter that emits OpenQASM traces and aggregates multi-shot
measurement results. Bloch supports classical control flow, deterministic resource management,
and first-class annotations such as @quantum (to delineate quantum code) and @tracked (to
stream measurements into probability tables). The language is implemented in C++20, ships
with a comprehensive test suite, and is licensed under Apache-2.0 to encourage adoption in
research and industrial workflows. By pairing static semantics with vendor-neutral QASM
emission, Bloch targets the gap between dynamically typed Python-first SDKs (e.g., Qiskit
and Cirq (Cirq Developers, 2023; Qiskit contributors, 2023)) and vendor-specific languages
while keeping a single-binary, non-Python toolchain.

Statement of Need
Quantum practitioners frequently prototype algorithms in Python-first SDKs like Qiskit (Qiskit
contributors, 2023) or Cirq (Cirq Developers, 2023), where dynamic typing and runtime-
only feedback can make it difficult to catch logic errors prior to simulation or hardware
execution. Researchers building higher-level language abstractions (e.g., Silq (Bichsel et al.,
2020) and Quipper (Green et al., 2013)) typically need to choose between tightly coupled vendor
ecosystems or experimenting with new type systems without a reference interpreter capable of
emitting standard assembly formats (OpenQASM 2 (Cross et al., 2017)). Practitioner-friendly
hybrids such as PennyLane (PennyLane Developers, 2024) and Microsoft Q# (Microsoft
Quantum, 2024) also trade stronger typing or portability for deeper vendor/framework
integration. Bloch fills this gap by delivering a self-contained toolchain that is explicitly
scoped to the following objectives:

• enforces a compact, explicit type system over both classical and quantum data so that
invalid measurements, illegal @quantum return types, and improper qubit mutations are
rejected at compile time;

• produces OpenQASM 2 output by default, which enables researchers to feed Bloch
programs into downstream simulators or device backends without rewriting;

• exposes deterministic multi-shot execution with aggregated statistics so that algorithm
designers can validate probabilistic behaviour before running on expensive quantum
hardware; and

• stays outside heavyweight Python packaging so that experiments can be reproduced
from a single CLI binary rather than a coupled SDK stack.

By targeting developers who are comfortable with systems languages but need a high-
level quantum DSL, Bloch reduces the friction between research sketches and reproducible

Pal. (2026). Bloch: a strongly typed, hardware-agnostic, hybrid quantum programming language. Journal of Open Source Software, 11(117), 9625.
https://doi.org/10.21105/joss.09625.

1

https://orcid.org/0009-0004-0465-4420
https://doi.org/10.21105/joss.09625
https://github.com/openjournals/joss-reviews/issues/9625
https://github.com/bloch-labs/bloch
https://doi.org/10.5281/zenodo.18407424
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/HectorMozo3110
https://github.com/joshiCoding
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.09625


experiments.

Design and Implementation
Bloch’s architecture is intentionally modular:

• Front-end. A hand-written lexer and Pratt-style parser (under src/bloch/lexer and
src/bloch/parser) build an abstract syntax tree (AST) that covers declarations, control
flow constructs, quantum annotations, and array expressions. The AST is shared by the
analyser, interpreter, and tests.

• Static semantics. The analyser (src/bloch/semantics) maintains a scoped symbol table
and a compact ValueType universe to ensure that only valid combinations of classical
and quantum operations progress to execution. It also enforces Bloch-specific rules, such
as restricting @quantum functions to bit or void return values and rejecting @tracked

annotations on unsupported types.
• Runtime & simulator. The interpreter (src/bloch/runtime) evaluates the AST,

orchestrates an ideal statevector simulator, and records measurement outcomes per
tracked symbol. Every run emits an OpenQASM trace, and the CLI (src/main.cpp)
can execute programs for N shots, aggregate measurement counts, and emit tabulated
probability estimates alongside the generated QASM.

• Feature staging. The lightweight feature-flag registry (src/bloch/feature_flags.hpp)
gives maintainers a way to land experimental language constructs (e.g., an upcoming
class system) without destabilising the default build.

The following Bloch kernel produces the interaction shown in Figure 1 when run for a single
shot:

@quantum function main() -> void {

qubit q;

h(q);

bit r = measure(q);

reset(q);

}

Figure 1 illustrates the runtime interaction between a Bloch program and the ideal statevector
simulator for a single kernel, showing gate application, measurement, classical result return,
and qubit reset:

Program Simulator

Program Simulator

h(q)

measure(q)

bit r

reset(q)

Figure 1: Figure 1: Program-simulator message flow for a Bloch kernel

Pal. (2026). Bloch: a strongly typed, hardware-agnostic, hybrid quantum programming language. Journal of Open Source Software, 11(117), 9625.
https://doi.org/10.21105/joss.09625.

2

https://doi.org/10.21105/joss.09625


The project distributes an installable binary and is validated on Linux, macOS, and Windows.
Users interact with the CLI (bloch <file.bloch>) which offers --emit-qasm, --shots=N, and
--echo parameters for reproducible experiments.

Comparative Analysis and Performance
Bloch targets a different point in the design space than popular hybrid SDKs:

Capability Bloch

PennyLane
(PennyLane
Developers,
2024)

Q# (Microsoft
Quantum,
2024)

Cirq (Cirq
Developers,
2023)

Implementation
language

C++20 CLI,
single binary

Python library
with plugin
backends

.NET language
and runtime

Python library

Type system Static,
quantum-aware

Dynamic
(Python)

Static Dynamic
(Python)

Default
artefact/output

OpenQASM 2
trace

Backend-specific
(optionally
QASM)

QIR/targeted
executables

Circuit objects
(optionally
QASM)

Hardware/vendor
coupling

Hardware-
agnostic via
QASM

Plugin-
dependent

Azure-centric
toolchain

Google-centric,
simulators
available

Built-in multi-shot
aggregation

Yes (@tracked,
CLI --shots)

Backend-
provided

Backend-
provided

Backend-
provided

Lightweight performance baselines from the bundled examples (captured with the ideal simulator
and 1024-shot runs) are:

Algorithm (1024 shots) Bloch execution time (3 s.f.)
Hadamard gate on single qubit 0.006 s
Preparing and measuring a Bell state 0.018 s
Grover search (N = 4) 0.055 s

These numbers come from the average runtime across ten runs for example algorithms provided
in the examples folder. It illustrates that the native C++ interpreter has negligible startup
cost compared to Python-first stacks.

Quality Control
Bloch ships with unit and integration tests implemented with the project’s minimal test harness
(tests/test_framework.hpp). The test suite covers the entire pipeline:

• lexical analysis and token categorisation (tests/test_lexer.cpp),
• parser shape and AST formation (tests/test_parser.cpp),
• static semantics (e.g., scope rules, @quantum return constraints, final assignments) in

tests/test_semantics.cpp,
• runtime behaviour such as OpenQASM emission, measurement persistence inside loops,

@tracked aggregation, and echo handling in tests/test_runtime.cpp, and
• integration smoke tests that exercise representative Bloch programs end to end

(tests/test_integration.cpp).

Pal. (2026). Bloch: a strongly typed, hardware-agnostic, hybrid quantum programming language. Journal of Open Source Software, 11(117), 9625.
https://doi.org/10.21105/joss.09625.

3

https://doi.org/10.21105/joss.09625


Continuous integration executes ctest on every pull request, while developers can repeat the
same workflow locally via the commands documented in README.md. Coverage touches the
lexer, parser, semantic analyser, and runtime, providing confidence that regressions in the type
system, simulator, or CLI are caught early.

Use Cases
Bloch aims to reduce the distance between whiteboard circuits and evaluable experiments.
Current use cases include:

1. Educational demos. The Bell-state example (examples/02_bell_state.bloch)
showcases hardware-agnostic entanglement with deterministic statistics reporting,
making it suitable for classroom explanations or live coding.

2. Algorithm sketching. Researchers can iteratively design algorithms that mix classical
control flow with quantum kernels, then export the emitted OpenQASM for downstream
tooling without reimplementation. The examples/04_grover_search.bloch program
demonstrates marked-item recovery via amplitude amplification without any Python
runtime dependencies.

3. Runtime experimentation. The @tracked facility and --shots flag make it straightforward
to explore noise-free distributions and verify that optimisations preserve measured
behaviour before porting kernels to other stacks. These facilities extend to broader
application areas such as oracle-based search, small-n optimisation experiments, and
amplitude estimation sketches that can be re-targeted by swapping the QASM consumer.

Availability
Bloch is openly developed at https://github.com/bloch-labs/bloch under the Apache-2.0
license. The repository bundles setup instructions, contribution guidelines, and a list of feature
flags so that new contributors can propose language extensions while maintaining release
stability. Pre-built binaries are available but not required; the CMake toolchain builds the CLI
across major platforms, and the project’s documentation hub (https://docs.bloch-labs.com)
provides user guides and API notes.

Acknowledgements
I thank the Bloch open source community for issue reports, early design feedback, and preview
testing, as well as the maintainers of the upstream projects cited in this paper whose work
makes Bloch interoperability possible.

References
Bichsel, B., Baader, M., Gehr, T., & Vechev, M. (2020). Silq: A high-level quantum

language with safe uncomputation. Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 286–300. https://doi.org/10.1145/
3385412.3386010

Cirq Developers. (2023). Cirq. https://doi.org/10.5281/zenodo.4062499

Cross, A. W., Bishop, L. S., Smolin, J. A., & Gambetta, J. M. (2017). Open quantum assembly
language. https://arxiv.org/abs/1707.03429

Green, A. S., Lumsdaine, P. L., Ross, N. J., Selinger, P., & Valiron, B. (2013). Quipper:
A scalable quantum programming language. Proceedings of the 34th ACM SIGPLAN

Pal. (2026). Bloch: a strongly typed, hardware-agnostic, hybrid quantum programming language. Journal of Open Source Software, 11(117), 9625.
https://doi.org/10.21105/joss.09625.

4

https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.5281/zenodo.4062499
https://arxiv.org/abs/1707.03429
https://doi.org/10.21105/joss.09625


Conference on Programming Language Design and Implementation, 333–342. https:
//doi.org/10.1145/2491956.2462177

Microsoft Quantum. (2024). The q# programming language. https://learn.microsoft.com/
azure/quantum/user-guide/programming/qsharp/

PennyLane Developers. (2024). PennyLane: Quantum machine learning and differentiable
programming. https://pennylane.ai

Qiskit contributors. (2023). Qiskit: An open-source framework for quantum computing.
https://doi.org/10.5281/zenodo.2573505

Pal. (2026). Bloch: a strongly typed, hardware-agnostic, hybrid quantum programming language. Journal of Open Source Software, 11(117), 9625.
https://doi.org/10.21105/joss.09625.

5

https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/2491956.2462177
https://learn.microsoft.com/azure/quantum/user-guide/programming/qsharp/
https://learn.microsoft.com/azure/quantum/user-guide/programming/qsharp/
https://pennylane.ai
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.21105/joss.09625

	Summary
	Statement of Need
	Design and Implementation
	Comparative Analysis and Performance
	Quality Control
	Use Cases
	Availability
	Acknowledgements
	References

