
PureML: a transparent NumPy-only deep learning
framework for teaching and prototyping
Yehor Mishchyriak 1

1 Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT, United
States

DOI: 10.21105/joss.09631

Software
• Review
• Repository
• Archive

Editor: Evan Spotte-Smith
Reviewers:

• @sampottinger
• @paquiteau
• @Manishms18
• @yewentao256

Submitted: 02 December 2025
Published: 23 January 2026

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
PureML is a compact deep-learning framework implemented entirely in NumPy. It provides
a tensor type with reverse-mode automatic differentiation, core neural-network layers and
losses, optimizers and learning-rate schedulers, activations, training utilities, and persistence
for model and optimizer states. A packaged MNIST dataset makes it easy to benchmark or
teach end-to-end (LeCun et al., 1998).

PureML is for learners and instructors who need a small, auditable codebase to illustrate
end-to-end training; researchers prototyping or auditing algorithms without the overhead of
multi-language stacks; and CPU-only or minimal-dependency environments where installing
PyTorch, TensorFlow/Keras, or JAX is impractical.

Statement of need
Modern deep-learning libraries such as PyTorch, TensorFlow/Keras, and JAX provide rich
ecosystems but are conceptually and operationally heavy for teaching low-level ML theory, code
reading, or CPU-only environments (Abadi et al., 2016; Bradbury et al., 2018; Chollet & others,
2015; Paszke et al., 2019). Pedagogical materials (including standard texts like Deep Learning
(Goodfellow et al., 2016)) often rely on pseudo-code or small snippets that omit practical details:
broadcasting semantics, batching, parameter persistence, computational graph construction,
vectorization, gradient accumulation, checkpointing, etc. As a result, learners struggle to
bridge the gap to real systems. At the other end of the spectrum, educational projects like
micrograd (Karpathy, 2020) purposefully keep the scope tiny, and minimalist systems like
tinygrad (Hotz & contributors, 2024) assume a systems background: tinygrad is engineered
like a compiler to optimize kernels and targets performance and low-level optimization over
didactic readability, effectively teaching how to build PyTorch. Projects like numpy-ml (Bourgin,
2019) offer a broad catalog of algorithms implemented in NumPy but are not built around
an autodiff engine and are not aimed at performance; they serve as references rather than
frameworks for training deep networks.

PureML aims to sit between these extremes: small enough to audit end-to-end, but feature-
complete enough for nontrivial models. The code remains transparent while supporting batch-
vectorized computation, dynamic computational graphs, forward pass caching, persistence,
and related functionality. It focuses on:

• Explicit reverse-mode autodiff with readable vector-Jacobian products (VJPs) for every
operation, so gradient flow is inspectable.

• Minimal runtime dependencies (NumPy and zarr) suitable for laptops, classrooms, and
CPU-only servers (Harris et al., 2020; Miles et al., 2025).

Mishchyriak. (2026). PureML: a transparent NumPy-only deep learning framework for teaching and prototyping. Journal of Open Source Software,
11(117), 9631. https://doi.org/10.21105/joss.09631.

1

https://orcid.org/0009-0001-8371-7159
https://doi.org/10.21105/joss.09631
https://github.com/openjournals/joss-reviews/issues/9631
https://github.com/Yehor-Mishchyriak/PureML
https://doi.org/10.5281/zenodo.18277559
https://espottesmith.github.io
https://orcid.org/0000-0003-1554-197X
https://github.com/sampottinger
https://github.com/paquiteau
https://github.com/Manishms18
https://github.com/yewentao256
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.09631


• Ready-to-run MNIST example to demonstrate end-to-end training without additional
downloads (LeCun et al., 1998).

• Persistence utilities that round-trip models, optimizer slots, and data for reproducible
exercises or small experiments.

• Intentional trade-offs: no GPU bindings, a single-file autodiff core with explicit VJPs, and
an emphasis on readability and auditability. Despite the small surface area, operations
are vectorized and efficient relying on NumPy.

Design and implementation
Core autograd. The Tensor type wraps NumPy arrays, records operations dynamically,
and executes reverse-mode autodiff with explicit VJPs. Broadcasting-aware gradient
reduction, slice/advanced indexing support, and graph teardown utilities (zero_grad_graph,
detach_graph) mirror the behaviors found in larger frameworks while remaining short enough
to audit. Safe exports (Tensor.numpy) discourage in-place mutation of parameter buffers.

Layers and losses. The library supplies Affine, Dropout, BatchNorm1d, and Embedding layers.
Losses include mean squared error, binary cross-entropy (probabilities or logits), and categorical
cross-entropy with optional label smoothing. Stable softmax and log-softmax implementations
avoid overflow.

Optimization stack. Optimizers (SGD (Robbins & Monro, 1951) with momentum, AdaGrad
(Duchi et al., 2011), RMSProp (Tieleman & Hinton, 2012), Adam/AdamW (Kingma & Ba,
2015)) share a common interface, support coupled or decoupled weight decay, and persist
optimizer slots via save_state/load_state. Lightweight schedulers (step, exponential, cosine
annealing (Loshchilov & Hutter, 2016)) operate in-place on optimizer learning rates.

Data utilities and models. A Dataset protocol, TensorDataset, and DataLoader (with slicing
fast paths and optional shuffling) simplify input pipelines. The bundled MnistDataset streams
compressed images/labels from a packaged zarr archive (LeCun et al., 1998). Example models
include a small fully connected MNIST classifier (MNIST_BEATER) and a classical k-nearest
neighbors classifier.

Persistence. The ArrayStorage abstraction wraps zarr v3 groups with Blosc compression and
can compress to read-only zip archives (Miles et al., 2025). Model parameters, buffers, and
top-level literals can be round-tripped to a single .pureml.zip file for reproducibility.

Ecosystem and dependencies. PureML requires only NumPy and zarr at runtime (Harris et al.,
2020; Miles et al., 2025), targets Python 3.11+, and is distributed on PyPI as ym-pure-ml.
Logging utilities configure rotating file/console handlers for experiments.

Project structure at a glance (code modules):

pureml/

machinery.py # Tensor core, autograd graph/VJPs

layers.py # Affine, BatchNorm1d, Dropout, Embedding

losses.py # CCE, BCE, MSE

activations.py # relu, softmax, log-softmax, etc.

optimizers.py # SGD, Adam/AdamW, RMSProp, AdaGrad + schedulers

training_utils.py # DataLoader, batching/loop helpers

datasets/

MNIST/dataset.py # packaged MNIST reader (zarr)

models/

neural_networks/mnist_beater.py

classical/knn.py

util.py # ArrayStorage (zarr persistence), helpers

base.py # NN base class (save/load, train/eval)

evaluation.py # metrics (accuracy)

Mishchyriak. (2026). PureML: a transparent NumPy-only deep learning framework for teaching and prototyping. Journal of Open Source Software,
11(117), 9631. https://doi.org/10.21105/joss.09631.

2

https://doi.org/10.21105/joss.09631


general_math.py # math helpers

logging_util.py # logging setup

Quality control
The GitHub repository contains a unit test suite (tests/) consisting of 106 tests that cover
autograd correctness (elementwise ops, broadcasting, slicing, matmul, reshaping), activation
stability, layers and buffers (including bias toggles and seeding), optimizer and scheduler
behavior, persistence round-trips, data utilities, and the MNIST dataset/model flow. The suite
runs with python -m unittest discover tests.

Example usage
from pureml import Tensor

from pureml.activations import relu

from pureml.layers import Affine

from pureml.base import NN

from pureml.datasets import MnistDataset

from pureml.optimizers import Adam

from pureml.losses import CCE

from pureml.training_utils import DataLoader

from pureml.evaluation import accuracy

import time

class MNIST_BEATER(NN):

def __init__(self) -> None:

self.L1 = Affine(28*28, 256)

self.L2 = Affine(256, 10)

def predict(self, x: Tensor) -> Tensor:

x = x.flatten(sample_ndim=2) # passing 2 because imgs in MNIST are 2D

x = relu(self.L1(x))

x = self.L2(x)

if self.training:

return x

return x.argmax(axis=x.ndim-1) # argmax over the feature dim

with MnistDataset("train") as train, MnistDataset("test") as test:

model = MNIST_BEATER().train()

opt = Adam(model.parameters, lr=1e-3, weight_decay=1e-2)

start_time = time.perf_counter()

for _ in range(5):

for X, Y in DataLoader(train, batch_size=128, shuffle=True):

opt.zero_grad()

logits = model(X)

loss = CCE(Y, logits, from_logits=True)

loss.backward()

opt.step()

end_time = time.perf_counter()

model.eval()

acc = accuracy(model, test, batch_size=1024)

print("Time taken: ", end_time - start_time, " sec.")

Mishchyriak. (2026). PureML: a transparent NumPy-only deep learning framework for teaching and prototyping. Journal of Open Source Software,
11(117), 9631. https://doi.org/10.21105/joss.09631.

3

https://doi.org/10.21105/joss.09631


print(f"Test accuracy: {acc * 100}")

Example usage in computational biology

SAWNERGY project builds its skip-gram embedding pipeline for amino acid interaction networks
using PureML (link).

Availability
Source code is available at https://github.com/Yehor-Mishchyriak/PureML.
The package is published on PyPI at https://pypi.org/project/ym-pure-ml/.
Documentation is available at https://ymishchyriak.com/docs/PUREML-DOCS.
The license is Apache-2.0.

Future directions
Planned extensions include convolutional, recurrent, and message-passing layers, attention
mechanisms, additional activation and loss functions, richer evaluation metrics, and related
tooling to support a broader range of deep-learning experiments.

Acknowledgements
I am grateful to Professor Kelly M. Thayer (Wesleyan University) for guidance and constructive
feedback on this project. I also acknowledge the authors of the Deep Learning textbook,
which informed the design and pedagogy of PureML (Goodfellow et al., 2016). This work was
supported by the National Science Foundation under Grant No. CHE-2320718.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., & others. (2016). TensorFlow: A system

for large-scale machine learning. OSDI. https://doi.org/10.48550/arXiv.1605.08695

Bourgin, D. (2019). Numpy-ml. https://github.com/ddbourgin/numpy-ml

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.3.13). http://github.com/jax-
ml/jax

Chollet, F., & others. (2015). Keras. https://keras.io.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12, 2121–2159.
http://jmlr.org/papers/v12/duchi11a.html

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Harris, C. R., Millman, K. J., Walt, S. J. van der, & others. (2020). Array programming with
NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2

Hotz, G., & contributors. (2024). Tinygrad. https://github.com/tinygrad/tinygrad

Karpathy, A. (2020). Micrograd. https://github.com/karpathy/micrograd

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. https:
//doi.org/10.48550/arXiv.1412.6980

Mishchyriak. (2026). PureML: a transparent NumPy-only deep learning framework for teaching and prototyping. Journal of Open Source Software,
11(117), 9631. https://doi.org/10.21105/joss.09631.

4

https://github.com/Yehor-Mishchyriak/SAWNERGY/blob/main/sawnergy/embedding/SGNS_pml.py
https://doi.org/10.48550/arXiv.1605.08695
https://github.com/ddbourgin/numpy-ml
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://keras.io
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/tinygrad/tinygrad
https://github.com/karpathy/micrograd
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.21105/joss.09631


LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.
1109/5.726791

Loshchilov, I., & Hutter, F. (2016). SGDR: Stochastic gradient descent with warm restarts.
https://doi.org/10.48550/arXiv.1608.03983

Miles, A., Kirkham, J., Stansby, D., Papadopoulos Orfanos, D., Hamman, J., & others. (2025).
Zarr-developers/zarr-python: v3.1.5 (Version v3.1.5). https://doi.org/10.5281/zenodo.
17672242

Paszke, A., Gross, S., Massa, F., & others. (2019). PyTorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing Systems, 32.
https://doi.org/10.48550/arXiv.1912.01703

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3), 400–407. https://doi.org/10.1214/aoms/1177729586

Tieleman, T., & Hinton, G. (2012). Lecture 6.5 - rmsprop: Divide the gradient by a
running average of its recent magnitude. Coursera: Neural Networks for Machine Learning.
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Mishchyriak. (2026). PureML: a transparent NumPy-only deep learning framework for teaching and prototyping. Journal of Open Source Software,
11(117), 9631. https://doi.org/10.21105/joss.09631.

5

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.48550/arXiv.1608.03983
https://doi.org/10.5281/zenodo.17672242
https://doi.org/10.5281/zenodo.17672242
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1214/aoms/1177729586
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.21105/joss.09631

	Summary
	Statement of need
	Design and implementation
	Quality control
	Example usage
	Example usage in computational biology

	Availability
	Future directions
	Acknowledgements
	References

