
pyfive: A pure-Python HDF5 reader
Bryan N. Lawrence 1,2, Ezequiel Cimadevilla 3, Wout De Nolf 4, David
Hassell 1,2, Jonathan Helmus5, Benjamin Hodel8, Brian Maranville 6, Kai
Mühlbauer 7, and Valeriu Predoi 1,2

1 National Center for Atmospheric Science (NCAS), United Kingdom. 2 Department of Meteorology,
University of Reading, Reading, United Kingdom. 3 Instituto de Física de Cantabria (IFCA),
CSIC-Universidad de Cantabria, Santander, Spain. 4 European Synchrotron Radiation Facility (ESRF),
Grenoble, France. 5 Astral Software Inc., USA. 6 NIST Center for Neutron Research, USA. 7 Institute of
Geosciences, Meteorology Section, University of Bonn, Germany. 8 Independent Researcher, USA.

DOI: 10.21105/joss.09688

Software
• Review
• Repository
• Archive

Editor: Richard Liu
Reviewers:

• @Zeitsperre
• @ayenpure
• @dostuffthatmatters

Submitted: 15 December 2025
Published: 12 February 2026

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
pyfive is an open-source and thread-safe pure Python package for reading data stored in
HDF5. While it is not a complete implementation of all the specifications and capabilities
of HDF5, it includes all the core functionality necessary to read gridded datasets, whether
stored contiguously or with chunks (with or without standard compression options). All data
access is fully lazy as the data is only read from storage when the numpy data arrays are
manipulated. Originally developed some years ago, the package has recently been expanded to
support lazy data access, and to add missing features necessary for handling all the HDF5-based
environmental data known to the authors. It is now a realistic option for production data
access in environmental science and more broadly across other domains. The API is based
on that of h5py (https://github.com/h5py/h5py, a Python shimmy over the HDF5 C-library
which itself is not thread-safe), with some API extensions to help optimise remote access. With
these extensions, coupled with thread safety, many of the limitations precluding the efficient
use of HDF5 (and netCDF4) on cloud storage have been removed.

Statement of need

HDF51 (Folk et al., 2011) is arguably the most important data format in physical science.
It is of particular importance in the environmental sciences that rely on the netCDF42 (Rew
et al., 2006) data format, which itself uses the HDF data format underneath. From satellite
missions to climate models and radar systems, the default binary format has been HDF5 for
decades. While newer data formats are starting to get mindshare, there are petabytes, if not
exabytes, of existing HDF5, and there remain many good use cases for creating new data in
the HDF5 format today. However, despite its historical importance, there are few libraries
available for reading HDF5 file data that do not depend on the official HDF5 library maintained
by the HDF Group. In particular, apart from pyfive, there are no Python HDF5 libraries
that address the data access needs of environmental science. While the HDF5 C library is
reliable and performant, and battle-tested over decades, there are some caveats to depending
upon it. Firstly, it is not thread-safe. Secondly, the underlying code is large and complex, and
should anything happen to the financial stability of the HDF Group, it is not obvious it could
be maintained. Finally, the code complexity also means that it is not suitable for developing
bespoke code for data recovery in the case of partially corrupt data. From a long-term curation
perspective these last two constraints present a major concern.

1https://www.hdfgroup.org/solutions/hdf5/
2https://www.unidata.ucar.edu/software/netcdf

Lawrence et al. (2026). pyfive: A pure-Python HDF5 reader. Journal of Open Source Software, 11(118), 9688. https://doi.org/10.21105/joss.09688. 1

https://orcid.org/0000-0001-9262-7860
https://orcid.org/0000-0002-8437-2068
https://orcid.org/0000-0003-2258-9402
https://orcid.org/0000-0002-5312-4950
https://orcid.org/0000-0002-6105-8789
https://orcid.org/0000-0001-6599-1034
https://orcid.org/0000-0002-9729-6578
https://ror.org/01wwwe276
https://ror.org/05v62cm79
https://doi.org/10.21105/joss.09688
https://github.com/openjournals/joss-reviews/issues/9688
https://github.com/ncas-cms/pyfive
https://doi.org/10.5281/zenodo.18599472
https://orcid.org/0009-0002-2475-5814
https://github.com/Zeitsperre
https://github.com/ayenpure
https://github.com/dostuffthatmatters
https://creativecommons.org/licenses/by/4.0/
https://github.com/h5py/h5py
https://doi.org/10.21105/joss.09688


Reliance on a complex codebase controlled by a single private company presents significant
challenges for long-term data access. Addressing these challenges requires well-documented
data formats, the use of only those documented features, and the existence of publicly available
code that can be sustainably maintained. The HDF Group have provided good documentation
for the HDF5 format, but while there are communities of developers beyond those of the HDF
Group, recent events suggest that given most of those developers and their existing funding
are based in the USA, some spreading of risk would be desirable. To that end, a pure Python
code covering the core HDF5 features of interest to the target scientific community, which is
relatively small and maintained by an international constituency, provides some assurance that
the community can maintain HDF5 access for the foreseeable future. A pure Python code
also makes it easier to develop scripts that can work around data and metadata corruption
should they occur, and has the additional advantage of being able to be deployed in resource
or operating-system constrained environments (such as on mobile).

Current Status of pyfive
The original implementation of pyfive (by JH), which included all the low-level functionality
to deal with the internals of an HDF5 file, was developed with POSIX access in mind. The
recent upgrades were developed with the use cases of performant remote access to curated
data as the primary motivation - including full support for lazy loading only the relevant parts
of chunked datasets as they are needed.

Thread safety has become a concern given the wide use of Dask3 in Python-based analysis
workflows, and this, coupled with a lack of user knowledge about how to efficiently use HDF5,
has led to a community perception that HDF5 is not fit for remote access (especially on
cloud storage). pyfive addresses thread safety by bypassing the underlying HDF5 C library. It
addresses some of the issues with remote access by supporting the determination of whether
or not a given file is cloud-optimised, and by optimising access to internal file metadata (in
particular, the chunk indexes).

To improve internal metadata access, pyfive supports several levels of laziness for instantating
chunked datasets (variables). The default method preloads internal indices to make parallellism
more efficient, but a completely lazy option without index loading is also possible. Neither
method loads data until it is requested.

To be fully cloud-optimised, files needs sensible chunking, and variables need contiguous indices.
Chunking information has always been easy to determine. pyfive now also provides simple
methods to expose information about internal file layout - both in API extensions, and via a
new p5dump utility packaged with the pyfive library4. Either method allows one to determine
whether the key internal “b-tree” indices are contiguous in storage, and to determine the
parameters necessary to rewrite the data with contiguous indices. While pyfive itself cannot
rewrite files to address chunking or layout, tools such as the HDF5 repack utility can do this
very efficiently (Hassell & Cimadevilla Alvarez, 2025).

With the use of pyfive, suitably repacked and rechunked HDF5 data can now be considered
“cloud-optimised”, insofar as with lazy loading, improved index handling, and thread-safety,
there are no “format-induced” constraints on performance during remote access.

Acknowledgements
Most of the recent developments outlined have been supported by the UK Met Office and
UKRI via 1) UK Excalibur Exascale programme (ExcaliWork), 2) the UKRI Digital Research
Infrastructure programme (WacaSoft), and 3) the national capability funding of the UK

3https://www.dask.org/
4https://pyfive.readthedocs.io/

Lawrence et al. (2026). pyfive: A pure-Python HDF5 reader. Journal of Open Source Software, 11(118), 9688. https://doi.org/10.21105/joss.09688. 2

https://support.hdfgroup.org/documentation/hdf5/latest/_h5_t_o_o_l__r_p__u_g.html
https://doi.org/10.21105/joss.09688


National Center for Atmospheric Science (NCAS). Ongoing maintenance of pyfive is expected
to continue with NCAS national capability funding.

References
Folk, M., Heber, G., Koziol, Q., Pourmal, E., & Robinson, D. (2011). An overview of the HDF5

technology suite and its applications. Proceedings of the EDBT/ICDT 2011 Workshop on
Array Databases, 36–47. https://doi.org/10.1145/1966895.1966900

Hassell, D., & Cimadevilla Alvarez, E. (2025). Cmip7repack: Repack CMIP7 netCDF-4
datasets. Zenodo. https://doi.org/10.5281/zenodo.17550920

Rew, R., Hartnett, E., & Caron, J. (2006). NetCDF-4: Software implementing an enhanced
data model for the geosciences. 22nd Inernational Conference on Interactive Information
Processing Systems for Meteorology, Oceanography and Hydrology.

Lawrence et al. (2026). pyfive: A pure-Python HDF5 reader. Journal of Open Source Software, 11(118), 9688. https://doi.org/10.21105/joss.09688. 3

https://doi.org/10.1145/1966895.1966900
https://doi.org/10.5281/zenodo.17550920
https://doi.org/10.21105/joss.09688

	Summary
	Statement of need
	Current Status of pyfive
	Acknowledgements
	References

